ﻻ يوجد ملخص باللغة العربية
The effects of spin-orbit (SOC) and electron-phonon coupling on the collective excitation of doped monolayer Sb$_2$ are investigated using density functional and many-body perturbation theories. The spin-orbit coupling is exclusively important for the monolayer Sb$_2$ and it leads to the reconstruction of the electronic band structure. In particular, plasmon modes of monolayer Sb$_2$ are quite sensitive to the SOC and are characterized by very low damping rates owing to small electron-phonon scatterings. Our results show plasmons in antimonene are significantly less damped compared to monolayer graphene when plasmon energies are $hbar omega> 0.2$ eV due to smaller plasmon-phonon coupling in the former material.
We report on strong coupling of the charge carrier plasmon $omega_{PL}$ in graphene with the surface optical phonon $omega_{SO}$ of the underlying SiC(0001) substrate with low electron concentration ($n=1.2times 10^{15}$ $cm^{-3}$) in the long wavele
Antimonene -- a single layer of antimony atoms -- and its few layer forms are among the latest additions to the 2D mono-elemental materials family. Numerous predictions and experimental evidence of its remarkable properties including (opto)electronic
Two-dimensional (2D) antimony (Sb, antimonene) recently attracted interest due to its peculiar electronic properties and its suitability as anode material in next generation batteries. Sb however exhibits a large polymorphic/allotropic structural div
Collective modes in two dimensional topological superconductors are studied by an extended random phase approximation theory while considering the influence of vector field of light. In two situations, the s-wave superconductors without spin-orbit-co
The collective excitation spectrum of two-dimensional (2D) antimonene is calculated beyond the low energy continuum approximation. The dynamical polarizability is computed using a 6-orbitals tight-binding model that properly accounts for the band str