ﻻ يوجد ملخص باللغة العربية
Hyperbolic materials are receiving significant attention due to their ability to support electromagnetic fields with arbitrarily high momenta and, hence, to achieve very strong light confinement. Here, based on first-principles calculations and many-body perturbation theory, we explore the characteristic of two-dimensional plasmon modes and its hyperbolic properties for two phases of single layer boron hosting tilted Dirac cone, namely, the $hr$-$sB$ and $8Pmmn$ borophene. In-plane anisotropy in borophene is manifested in the structural, electronic, vibrational and optical properties. We find two hyperbolic regimes for both phases of borophene, where the high-energy one is located in the visible range. The $hr$-$sB$ borophene is characterised with an intrinsic high carrier density and it supports strong hyperbolic plasmon modes in the visible part of the spectrum. The $8Pmmn$ borophene, on the other hand, resembles the prototypical Dirac material graphene, and upon carrier doping acquires anisotropic Dirac plasmons in the mid-infrared. We have also investigated the impact of the electron-phonon coupling and Landau damping on these hyperbolic plasmon modes. Our results show that borophene, having high anisotropy, intrinsic high carrier concentration, low-loss hyperbolic Dirac plasmon modes, and high confinement can represent a promising candidate for low-loss broad band surface plasmon polariton devices.
Honeycomb structures of group IV elements can host massless Dirac fermions with non-trivial Berry phases. Their potential for electronic applications has attracted great interest and spurred a broad search for new Dirac materials especially in monola
In a graphene-based Josephson junction, the Andreev reflection can become specular which gives rise to propagating Andreev modes. These propagating Andreev modes are essentially charge neutral and therefore they transfer energy but not electric charg
We investigate exemplary the longitudinal optical (LO) mode order in compounds with a plasmon or plasmon-like phonon mode and additional phonon modes. When the oscillator strength of the plasmon or plasmon-like mode is gradually increased, a reorderi
We study the electromagnetic response and surface electromagnetic modes in a generic gapped Dirac material under pumping with circularly polarized light. The valley imbalance due to pumping leads to a net Berry curvature, giving rise to a finite tran
In this work, we predict a novel band structure for Carbon-Lithium(C4Li) compound using the first-principles method. We show that it exhibits two Dirac points near the Fermi level; one located at W point originating from the nonsymmophic symmetry of