ترغب بنشر مسار تعليمي؟ اضغط هنا

As is well-known, the dimension of the space spanned by the non-degenerate invariant symmetric bilinear forms (NISes) on any simple finite-dimensional Lie algebra or Lie superalgebra is equal to at most 1 if the characteristic of the algebraically cl osed ground field is not 2. We prove that in characteristic 2, the superdimension of the space spanned by NISes can be equal to 0, or 1, or $0|1$, or $1|1$; it is equal to $1|1$ if and only if the Lie superalgebra is a queerification (defined in arXiv:1407.1695) of a simple classically restricted Lie algebra with a NIS (for examples, mainly in characteristic distinct from 2, see arXiv:1806.05505). We give examples of NISes on deformations (with both even and odd parameters) of several simple finite-dimensional Lie superalgebras in characteristic 2. We also recall examples of multiple NISes on simple Lie algebras over non-closed fields.
We say that a~Lie (super)algebra is ``symmetric if with every root (with respect to the maximal torus) it has its opposite of the same multiplicity. Over algebraically closed fields of positive characteristics we describe the deforms (results of defo rmations) of all known simple finite-dimensional symmetric Lie (super)algebras of rank $<9$, except for superizations of the Lie algebras with ADE root systems. The moduli of deformations of any Lie superalgebra constitute a supervariety. Any infinitesimal deformation given by any odd cocycle is integrable with an odd parameter running over a~supervariety. All deforms corresponding to odd cocycles are new. Among new results are classification of the deforms of the 29-dimensional Brown algebra in characteristic 3, of Weisfeiler-Kac algebras and orthogonal Lie algebras without Cartan matrix in characteristic 2. For the Lie (super)algebras considered, all cocycles are integrable, the deforms corresponding to the weight cocycles are usually linear in the parameter. Problem: describe isomorphic deforms. Appendix: For several modular analogs of complex simple Lie algebras, and simple Lie algebras indigenous to characteristics 3 and 2, we describe the space of cohomology with trivial coefficients. We show that the natural multiplication in this space is very complicated.
We list all 97 pairs (almost affine Lie superalgebra, its desuperization = a hyperbolic Lie algebra). Several (18 of the total 66) hyperbolic Lie algebras have multiple superizations. The tracks of cosmological billiards corresponding to these pairs are the same.
For the exceptional finite-dimensional modular Lie superalgebras $mathfrak{g}(A)$ with indecomposable Cartan matrix $A$, and their simple subquotients, we computed non-isomorphic Lie superalgebras constituting the homologies of the odd elements with zero square. These homologies are~key ingredients in the Duflo--Serganova approach to the representation theory. There were two definitions of defect of Lie superalgebras in the literature with different ranges of application. We suggest a third definition and an easy-to-use way to find its value. In positive characteristic, we found out one more reason to consider the space of roots over reals, unlike the space of weights, which should be considered over the ground field. We proved that the rank of the homological element (decisive in calculating the defect of a given Lie superalgebra) should be considered in the adjoint module, not the irreducible module of least dimension (although the latter is sometimes possible to consider, e.g., for $p=0$). We also computed the above homology for the only case of simple Lie superalgebras with symmetric root system not considered so far over the field of complex numbers, and its modul
139 - Dimitry Leites 2019
The definition of Kaehler manifold is superized. In the super setting, it admits a continuous parameter, unlike their analogs on manifolds. This parameter runs the same singular supervariety of parameters that parameterize deformations of the Schoute n bracket (a.k.a. Buttin bracket, a.k.a. anti-bracket) considered as deformations of the Lie superalgebra structure given by the bracket. The same idea yields definitions of sever
The Amitsur-Levitzki identity for matrices was generalized in several directions: by Kostant for simple finite-dimensional Lie algebras, by Kirillov (later joined by Kontsevich, Molev, Ovsienko, and Udalova) for simple vectorial Lie algebras with pol ynomial coefficients, and by Gie, Pinczon, and Ushirobira for the orthosymplectic Lie superalgebra $mathfrak{osp}(1|n)$. Dzhumadildaev switched the focus of attention in these results by considering the algebra formed by antisymmetrizors and discovered a hidden supersymmetry of commutators. We overview these results and their possible generalizations (open problems).
The inverses of indecomposable Cartan matrices are computed for finite-dimensional Lie algebras and Lie superalgebras over fields of any characteristic, and for hyperbolic (almost affine) complex Lie (super)algebras. We discovered three yet inexplica ble new phenomena, of which (a) and (b) concern hyperbolic (almost affine) complex Lie (super)algebras, except for the 5 Lie superalgebras whose Cartan matrices have 0 on the main diagonal: (a) several of the inverses of Cartan matrices have all their elements negative (not just non-positive, as they should be according to an a priori characterization due to Zhang Hechun); (b) the 0s only occur on the main diagonals of the inverses; (c) the determinants of inequivalent Cartan matrices of the simple Lie (super)algebra may differ (in any characteristic). We interpret most of the results of Wei Yangjiang and Zou Yi Ming, Inverses of Cartan matrices of Lie algebras and Lie superalgebras, Linear Alg. Appl., 521 (2017) 283--298 as inverses of the Gram matrices of non-degenerate invariant symmetric bilinear forms on the (super)algebras considered, not of Cartan matrices, and give more adequate references. In particular, the inverses of Cartan matrices of simple Lie algebras were already published, starting with Dynkins paper in 1952, see also Table 2 in Springers book by Onishchik and Vinberg (1990).
150 - Dimitry Leites 2019
1) The differential equation considered in terms of exterior differential forms, as E.Cartan did, singles out a differential ideal in the supercommutative superalgebra of differential forms, hence an affine supervariety. In view of this observation, it is evident that every differential equation has a supersymmetry (perhaps trivial). Superymmetries of which (systems of) classical differential equations are missed yet? 2) Why criteria of formal integrability of differential equations are never used in practice?
A Lie (super)algebra with a non-degenerate invariant symmetric bilinear form $B$ is called a nis-(super)algebra. The double extension $mathfrak{g}$ of a nis-(super)algebra $mathfrak{a}$ is the result of simultaneous adding to $mathfrak{a}$ a central element and a derivation so that $mathfrak{g}$ is a nis-algebra. Loop algebras with values in simple complex Lie algebras are most known among the Lie (super)algebras suitable to be doubly extended. In characteristic 2 the notion of double extension acquires specific features. Restricted Lie (super)algebras are among the most interesting modular Lie superalgebras. In characteristic 2, using Grozmans Mathematica-based package SuperLie, we list double extensions of restricted Lie superalgebras preserving the non-degenerate closed 2-forms with constant coefficients. The results are proved for the number of indeterminates ranging from 4 to 7 - sufficient to conjecture the pattern for larger numbers. Considering multigradings allowed us to accelerate computations up to 100 times.
For each of the exceptional Lie superalgebras with indecomposable Cartan matrix, we give the explicit list of its roots of and the corresponding Chevalley basis for one of the inequivalent Cartan matrices, the one corresponding to the greatest number of mutually orthogonal isotropic odd simple roots. Our main tools: Grozmans Mathematica-based code SuperLie, and Python.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا