ﻻ يوجد ملخص باللغة العربية
1) The differential equation considered in terms of exterior differential forms, as E.Cartan did, singles out a differential ideal in the supercommutative superalgebra of differential forms, hence an affine supervariety. In view of this observation, it is evident that every differential equation has a supersymmetry (perhaps trivial). Superymmetries of which (systems of) classical differential equations are missed yet? 2) Why criteria of formal integrability of differential equations are never used in practice?
The method, proposed in the given work, allows the application of well developed standard methods used in quantum mechanics for approximate solution of the systems of ordinary linear differential equations with periodical coefficients.
This letter is concerned with the analysis of the six-vertex model with domain-wall boundaries in terms of partial differential equations (PDEs). The models partition function is shown to obey a system of PDEs resembling the celebrated Knizhnik-Zamol
This paper presents an observation that under reasonable conditions, many partial differential equations from mathematical physics possess three structural properties. One of them can be understand as a variant of the celebrated Onsager reciprocal re
We survey the theory of attractors of nonlinear Hamiltonian partial differential equations since its appearance in 1990. These are results on global attraction to stationary states, to solitons and to stationary orbits, on adiabatic effective dynamic
The aim of this paper is twofold. First, we obtain the explicit exact formal solutions of differential equations of different types in the form with Dyson chronological operator exponents. This allows us to deal directly with the solutions to the equ