ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dzhumadildaev brackets: a hidden supersymmetry of commutators and the Amitsur-Levitzki-type identities

43   0   0.0 ( 0 )
 نشر من قبل Dimitry Leites
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Amitsur-Levitzki identity for matrices was generalized in several directions: by Kostant for simple finite-dimensional Lie algebras, by Kirillov (later joined by Kontsevich, Molev, Ovsienko, and Udalova) for simple vectorial Lie algebras with polynomial coefficients, and by Gie, Pinczon, and Ushirobira for the orthosymplectic Lie superalgebra $mathfrak{osp}(1|n)$. Dzhumadildaev switched the focus of attention in these results by considering the algebra formed by antisymmetrizors and discovered a hidden supersymmetry of commutators. We overview these results and their possible generalizations (open problems).

قيم البحث

اقرأ أيضاً

This paper presents new results on the identities satisfied by the hypoplactic monoid. We show how to embed the hypoplactic monoid of any rank strictly greater than 2 (including infinite rank) into a direct product of copies of the hypoplactic monoid of rank 2. This confirms that all hypoplactic monoids of rank greater than or equal to 2 satisfy exactly the same identities. We then give a complete characterization of those identities, and prove that the variety generated by the hypoplactic monoid has finite axiomatic rank, by giving a finite basis for it.
This paper presents new results on the identities satisfied by the sylvester and Baxter monoids. We show how to embed these monoids, of any rank strictly greater than 2, into a direct product of copies of the corresponding monoid of rank 2. This conf irms that all monoids of the same family, of rank greater than or equal to 2, satisfy exactly the same identities. We then give a complete characterization of those identities, and prove that the varieties generated by the sylvester and the Baxter monoids have finite axiomatic rank, by giving a finite basis for them.
Let $A$ and $B$ be finite-dimensional simple algebras with arbitrary signature over an algebraically closed field. Suppose $A$ and $B$ are graded by a semigroup $S$ so that the graded identitical relations of $A$ are the same as those of $B$. Then $A$ is isomorphic to $B$ as an $S$-graded algebra.
We give an explicit formula showing how the double Poisson algebra introduced in cite{VdB} appears as a particular part of a pre-Calabi-Yau structure, i.e. cyclically invariant, with respect to the natural inner form, solution of the Maurer-Cartan eq uation on $Aoplus A^*$. Specific part of this solution is described, which is in one-to-one correspondence with the double Poisson algebra structures. The result holds for any associative algebra $A$ and emphasizes the special role of the fourth component of a pre-Calabi-Yau structure in this respect. As a consequence we have that appropriate pre-Calabi-Yau structures induce a Poisson brackets on representation spaces $({rm Rep}_n A)^{Gl_n}$ for any associative algebra $A$.
We exhibit a faithful representation of the plactic monoid of every finite rank as a monoid of upper triangular matrices over the tropical semiring. This answers a question first posed by Izhakian and subsequently studied by several authors. A conseq uence is a proof of a conjecture of Kubat and Okni{n}ski that every plactic monoid of finite rank satisfies a non-trivial semigroup identity. In the converse direction, we show that every identity satisfied by the plactic monoid of rank $n$ is satisfied by the monoid of $n times n$ upper triangular tropical matrices. In particular this implies that the variety generated by the $3 times 3$ upper triangular tropical matrices coincides with that generated by the plactic monoid of rank $3$, answering another question of Izhakian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا