ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum entanglement permeates the complex ground states of correlated electron materials defying single-particle descriptions. Coupled magnetic atoms have potential as model systems for entanglement in condensed matter giving the opportunity to crea te artificial many-body states which can be controlled by tuning the underlying interactions. They provide an avenue to unravel the complexities of correlated-electron materials. Here we use low temperature scanning tunnelling microscopy (STM) and atomic manipulation to tune entanglement in chains of magnetic atoms. We find that a Kondo singlet state can emerge from this entanglement. The many electron Kondo state is based on the screening of the entangled spin ground state of the chain by substrate electrons and can be engineered to envelop at least ten magnetic atoms. The concomitant Kondo resonance measured in the differential conductance enables the electric read-out of entanglement. By tuning composition and coupling strength within atomic chains it is possible to create model spin chains with defined entanglement. This lays the foundation for a new class of experiments to construct exotic correlated-electron materials atom by atom.
We use a low-temperature scanning tunneling microscope to study the interplay between the Kondo effect of a single-atom contact and a spin current. To this end, a nickel tip is coated by a thick layer of copper and brought into contact with a single Co atom adsorbed on a Cu(100) surface. We show that upon contact the Kondo resonance of Co is spin split and attribute the splitting to the spin current produced by the nickel tip and flowing across the copper spacer. A quantitative line shape analysis indicates that the spin polarization of the junction amounts up to 18%, but decreases when a pristine nickel tip is directly contacted to the Co atom.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا