ﻻ يوجد ملخص باللغة العربية
Quantum entanglement permeates the complex ground states of correlated electron materials defying single-particle descriptions. Coupled magnetic atoms have potential as model systems for entanglement in condensed matter giving the opportunity to create artificial many-body states which can be controlled by tuning the underlying interactions. They provide an avenue to unravel the complexities of correlated-electron materials. Here we use low temperature scanning tunnelling microscopy (STM) and atomic manipulation to tune entanglement in chains of magnetic atoms. We find that a Kondo singlet state can emerge from this entanglement. The many electron Kondo state is based on the screening of the entangled spin ground state of the chain by substrate electrons and can be engineered to envelop at least ten magnetic atoms. The concomitant Kondo resonance measured in the differential conductance enables the electric read-out of entanglement. By tuning composition and coupling strength within atomic chains it is possible to create model spin chains with defined entanglement. This lays the foundation for a new class of experiments to construct exotic correlated-electron materials atom by atom.
We study the time evolution of bi- and tripartite operator mutual information of the time-evolution operator and Paulis spin operators in the one-dimensional Ising model with magnetic field and the disordered Heisenberg model. In the Ising model, the
The Kondo effect is a key many-body phenomenon in condensed matter physics. It concerns the interaction between a localised spin and free electrons. Discovered in metals containing small amounts of magnetic impurities, it is now a fundamental mechani
Using strong-disorder renormalization group, numerical exact diagonalization, and quantum Monte Carlo methods, we revisit the random antiferromagnetic XXZ spin-1/2 chain focusing on the long-length and ground-state behavior of the average time-indepe
Linear and nonlinear transport of quantum wires is investigated at a magnetic field where spin-split one-dimensional (1D) subbands are equidistant in energy. In this seldom-studied regime, experiments are consistent with a density-dependent energy ga
The ability to make electrical contact to single molecules creates opportunities to examine fundamental processes governing electron flow on the smallest possible length scales. We report experiments in which we controllably stretch individual cobalt