ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-current induced Kondo-resonance splitting of a single cobalt atom

164   0   0.0 ( 0 )
 نشر من قبل Laurent Limot
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a low-temperature scanning tunneling microscope to study the interplay between the Kondo effect of a single-atom contact and a spin current. To this end, a nickel tip is coated by a thick layer of copper and brought into contact with a single Co atom adsorbed on a Cu(100) surface. We show that upon contact the Kondo resonance of Co is spin split and attribute the splitting to the spin current produced by the nickel tip and flowing across the copper spacer. A quantitative line shape analysis indicates that the spin polarization of the junction amounts up to 18%, but decreases when a pristine nickel tip is directly contacted to the Co atom.



قيم البحث

اقرأ أيضاً

An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propaga ting waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space. The strong atom-field interaction as revealed in a high degree of extinction of propagating waves will allow applications of controllable artificial atoms in quantum optics and photonics.
Proximity of two different materials leads to an intricate coupling of quasiparticles so that an unprecedented electronic state is often realized at the interface. Here, we demonstrate a resonance-type many-body ground state in graphene, a non-magnet ic two-dimensional Dirac semimetal, when grown on SmB6, a Kondo insulator, via thermal decomposition of fullerene molecules. This ground state is typically observed in three-dimensional magnetic materials with correlated electrons. Above the characteristic Kondo temperature of the substrate, the electron band structure of pristine graphene remains almost intact. As temperature decreases, however, the Dirac fermions of graphene become hybridized with the Sm 4f states. Remarkable enhancement of the hybridization and Kondo resonance is observed with further cooling and increasing charge carrier density of graphene, evidencing the Kondo screening of the Sm 4f local magnetic moment by the conduction electrons of graphene at the interface. These findings manifest the realization of the Kondo effect in graphene by the proximity of SmB6 that is tuned by temperature and charge carrier density of graphene.
91 - R.C. Monreal , F. Flores 2005
The Kondo problem, for a quantum dot (QD), subjected to an external bias, is analyzed in the limit of infinite Coulomb repulsion by using a consistent equations of motion method based on a slave-boson Hamiltonian. Utilizing a strict perturbative solu tion in the leads-dot coupling, T, to T^4 and T^6 orders, we calculate the QD spectral density and conductance, as well as the decoherent rate that drive the systemm from the strong to the weak coupling regime. Our results indicate thet the weak coupling regime is reached for voltages larger than a few units of the Kondo temperature.
Kondo correlations are responsible for the emergence of a zero-bias peak in the low temperature differential conductance of Coulomb blockaded quantum dots. In the presence of a global SU(2)$otimes$SU(2) symmetry, which can be realized in carbon nanot ubes, they also inhibit inelastic transitions which preserve the Kramers pseudospins associated to the symmetry. We report on magnetotransport experiments on a Kondo correlated carbon nanotube where resonant features at the bias corresponding to the pseudospin-preserving transitions are observed. We attribute this effect to a simultaneous enhancement of pseudospin-non-preserving transitions occurring at that bias. This process is boosted by asymmetric tunneling couplings of the two Kramers doublets to the leads and by asymmetries in the potential drops at the leads. Hence, the present work discloses a fundamental microscopic mechanisms ruling transport in Kondo systems far from equilibrium.
We study spin-dependent conductance in a system composed of a ferromagnetic (FM) Scanning Tunneling Microscope (STM) tip coupled to a metallic host surface with an adatom. The Kondo resonance is taken into account via the Doniach-Sunjic spectral func tion. For short lateral tip-adatom distances and due to the interplay between Kondo physics, quantum interfering effects and the ferromagnetism of the tip, a spin-splitting of the Fano-Kondo line shape arises in the conductance. A strong enhancement of the Fano-Kondo profile for the majority spin component of the FM tip is observed. When the tip is placed on the adatom, this gives a conductance 100 % polarized for a particular range of bias voltage. The system thus can be used as a powerful generator of spin polarized currents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا