ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the diffusion of epidemics on networks that are partitioned into local communities. The gross structure of hierarchical networks of this kind can be described by a quotient graph. The rationale of this approach is that individuals infect tho se belonging to the same community with higher probability than individuals in other communities. In community models the nodal infection probability is thus expected to depend mainly on the interaction of a few, large interconnected clusters. In this work, we describe the epidemic process as a continuous-time individual-based susceptible-infected-susceptible (SIS) model using a first-order mean-field approximation. A key feature of our model is that the spectral radius of this smaller quotient graph (which only captures the macroscopic structure of the community network) is all we need to know in order to decide whether the overall healthy-state defines a globally asymptotically stable or an unstable equilibrium. Indeed, the spectral radius is related to the epidemic threshold of the system. Moreover we prove that, above the threshold, another steady-state exists that can be computed using a lower-dimensional dynamical system associated with the evolution of the process on the quotient graph. Our investigations are based on the graph-theoretical notion of equitable partition and of its recent and rather flexible generalization, that of almost equitable partition.
62 - Bobo Hua , Delio Mugnolo 2014
We consider the so-called emph{discrete $p$-Laplacian}, a nonlinear difference operator that acts on functions defined on the nodes of a possibly infinite graph. We study the associated nonlinear Cauchy problem and identify the generator of the assoc iated nonlinear semigroups. We prove higher order time regularity of the solutions. We investigate the long-time behavior of the solutions and discuss in particular finite extinction time and conservation of mass. Namely, on one hand, for small $p$ if an infinite graph satisfies some isoperimetric inequality, then the solution to the parabolic $p$-Laplace equation vanishes in finite time; on the other hand, for large $p,$ these parabolic $p$-Laplace equations always enjoy conservation of mass.
We present a Gershgorins type result on the localisation of the spectrum of a matrix. Our method is elementary and relies upon the method of Schur complements, furthermore it outperforms the one based on the Cassini ovals of Ostrovski and Brauer. Fur thermore, it yields estimates that hold without major differences in the cases of both scalar and operator matrices. Several refinements of known results are obtained.
60 - Delio Mugnolo 2014
We introduce quantum hypergraphs, in analogy with the theory of quantum graphs developed over the last 15 years by many authors. We emphasize some problems that arise when one tries to define a Laplacian on a hypergraph.
214 - Delio Mugnolo 2014
We discuss the Krein--von Neumann extensions of three Laplacian-type operators -- on discrete graphs, quantum graphs, and domains. In passing we present a class of one-dimensional elliptic operators such that for any $nin mathbb N$ infinitely many el ements of the class have $n$-dimensional null space.
82 - Delio Mugnolo 2013
We survey some known results about operator semigroup generated by operator matrices with diagonal or coupled domain. These abstract results are applied to the characterization of well-/ill-posedness for a class of evolution equations with dynamic bo undary conditions on domains or metric graphs. In particular, our ill-posedness results on the heat equation with general Wentzell-type boundary conditions complement those previously obtained by, among others, Bandle-von Below-Reichel and Vitillaro-Vazquez.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا