ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding nano- and micro-scale crystal strain in CVD diamond is crucial to the advancement of diamond quantum technologies. In particular, the presence of such strain and its characterization present a challenge to diamond-based quantum sensing and information applications -- as well as for future dark matter detectors where directional information of incoming particles is encoded in crystal strain. Here, we exploit nanofocused scanning X-ray diffraction microscopy to quantitatively measure crystal deformation from growth defects in CVD diamond with high spatial and strain resolution. Combining information from multiple Bragg angles allows stereoscopic three-dimensional reconstruction of strained volumes; the diffraction results are validated via comparison to optical measurements of the strain tensor based on spin-state-dependent spectroscopy of ensembles of nitrogen vacancy (NV) centers in the diamond. Our results open a path towards directional detection of dark matter via X-ray measurement of crystal strain, and provide a new tool for diamond growth analysis and improvement of defect-based sensing.
We demonstrate a broad, flat, visible supercontinuum spectrum that is generated by a dispersion-engineered tapered photonic crystal fiber pumped by a 1 GHz repetition rate turn-key Ti:sapphire laser outputting $sim$ 30 fs pulses at 800 nm. At a pulse energy of 100 pJ, we obtain an output spectrum that is flat to within 3 dB over the range 490-690 nm with a blue tail extending below 450 nm. The mode-locked laser combined with the photonic crystal fiber forms a simple visible frequency comb system that is extremely well-suited to the precise calibration of astrophysical spectrographs, among other applications.
Using a turn-key Ti:sapphire femtosecond laser frequency comb, an off-the-shelf supercontinuum device, and Fabry-Perot mode filters, we report the generation of a 16 GHz frequency comb spanning a 90 nm band about a center wavelength of 566 nm. The li ght from this astro-comb is used to calibrate the HARPS-N astrophysical spectrograph for precision radial velocity measurements. The comb-calibrated spectrograph achieves a stability of $sim$ 1 cm/s within half an hour of averaging time. We also use the astro-comb as a reference for measurements of solar spectra obtained with a compact telescope, and as a tool to study intrapixel sensitivity variations on the CCD of the spectrograph.
Radial velocity perturbations induced by stellar surface inhomogeneities including spots, plages and granules currently limit the detection of Earth-twins using Doppler spectroscopy. Such stellar noise is poorly understood for stars other than the Su n because their surface is unresolved. In particular, the effects of stellar surface inhomogeneities on observed stellar radial velocities are extremely difficult to characterize, and thus developing optimal correction techniques to extract true stellar radial velocities is extremely challenging. In this paper, we present preliminary results of a solar telescope built to feed full-disk sunlight into the HARPS-N spectrograph, which is in turn calibrated with an astro-comb. This setup enables long-term observation of the Sun as a star with state-of-the-art sensitivity to radial velocity changes. Over seven days of observing in 2014, we show an average 50cms radial velocity rms over a few hours of observation. After correcting observed radial velocities for spot and plage perturbations using full-disk photometry of the Sun, we lower by a factor of two the weekly radial velocity rms to 60cms. The solar telescope is now entering routine operation, and will observe the Sun every clear day for several hours. We will use these radial velocities combined with data from solar satellites to improve our understanding of stellar noise and develop optimal correction methods. If successful, these new methods should enable the detection of Venus over the next two to three years, thus demonstrating the possibility of detecting Earth-twins around other solar-like stars using the radial velocity technique.
We present a consistent, generally covariant quantization of light for non-vacuum birefringent, Lorentz-symmetry breaking electrodynamics in the context of the Standard Model Extension. We find that the number of light quanta in the field is not fram e independent, and that the interaction of the quantized field with matter is necessarily birefringent. We also show that the conventional Lorenz gauge condition used to restrict the photon-mode basis to solutions of the Maxwell equations must be weakened to consistently describe Lorentz symmetry violation.
We consider the possibility that Lorentz violation can generate differences between the limiting velocities of light and charged matter. Such effects would lead to efficient vacuum Cherenkov radiation or rapid photon decay. The absence of such effect s for 104.5 GeV electrons at the Large Electron Positron collider and for 300 GeV photons at the Tevatron therefore constrains this type of Lorentz breakdown. Within the context of the standard-model extension, these ideas imply an experimental bound at the level of -5.8 x 10^{-12} <= tilde{kappa}_{tr}-(4/3)c_e^{00} <= 1.2 x 10^{-11} tightening existing laboratory measurements by 3-4 orders of magnitude. Prospects for further improvements with terrestrial and astrophysical methods are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا