ترغب بنشر مسار تعليمي؟ اضغط هنا

Action recognition is a crucial task for video understanding. In this paper, we present AutoVideo, a Python system for automated video action recognition. It currently supports seven action recognition algorithms and various pre-processing modules. U nlike the existing libraries that only provide model zoos, AutoVideo is built with the standard pipeline language. The basic building block is primitive, which wraps a pre-processing module or an algorithm with some hyperparameters. AutoVideo is highly modular and extendable. It can be easily combined with AutoML searchers. The pipeline language is quite general so that we can easily enrich AutoVideo with algorithms for various other video-related tasks in the future. AutoVideo is released under MIT license at https://github.com/datamllab/autovideo
Graph neural networks (GNNs) integrate deep architectures and topological structure modeling in an effective way. However, the performance of existing GNNs would decrease significantly when they stack many layers, because of the over-smoothing issue. Node embeddings tend to converge to similar vectors when GNNs keep recursively aggregating the representations of neighbors. To enable deep GNNs, several methods have been explored recently. But they are developed from either techniques in convolutional neural networks or heuristic strategies. There is no generalizable and theoretical principle to guide the design of deep GNNs. To this end, we analyze the bottleneck of deep GNNs by leveraging the Dirichlet energy of node embeddings, and propose a generalizable principle to guide the training of deep GNNs. Based on it, a novel deep GNN framework -- EGNN is designed. It could provide lower and upper constraints in terms of Dirichlet energy at each layer to avoid over-smoothing. Experimental results demonstrate that EGNN achieves state-of-the-art performance by using deep layers.
Games are abstractions of the real world, where artificial agents learn to compete and cooperate with other agents. While significant achievements have been made in various perfect- and imperfect-information games, DouDizhu (a.k.a. Fighting the Landl ord), a three-player card game, is still unsolved. DouDizhu is a very challenging domain with competition, collaboration, imperfect information, large state space, and particularly a massive set of possible actions where the legal actions vary significantly from turn to turn. Unfortunately, modern reinforcement learning algorithms mainly focus on simple and small action spaces, and not surprisingly, are shown not to make satisfactory progress in DouDizhu. In this work, we propose a conceptually simple yet effective DouDizhu AI system, namely DouZero, which enhances traditional Monte-Carlo methods with deep neural networks, action encoding, and parallel actors. Starting from scratch in a single server with four GPUs, DouZero outperformed all the existing DouDizhu AI programs in days of training and was ranked the first in the Botzone leaderboard among 344 AI agents. Through building DouZero, we show that classic Monte-Carlo methods can be made to deliver strong results in a hard domain with a complex action space. The code and an online demo are released at https://github.com/kwai/DouZero with the hope that this insight could motivate future work.
Time-series representation learning is a fundamental task for time-series analysis. While significant progress has been made to achieve accurate representations for downstream applications, the learned representations often lack interpretability and do not expose semantic meanings. Different from previous efforts on the entangled feature space, we aim to extract the semantic-rich temporal correlations in the latent interpretable factorized representation of the data. Motivated by the success of disentangled representation learning in computer vision, we study the possibility of learning semantic-rich time-series representations, which remains unexplored due to three main challenges: 1) sequential data structure introduces complex temporal correlations and makes the latent representations hard to interpret, 2) sequential models suffer from KL vanishing problem, and 3) interpretable semantic concepts for time-series often rely on multiple factors instead of individuals. To bridge the gap, we propose Disentangle Time Series (DTS), a novel disentanglement enhancement framework for sequential data. Specifically, to generate hierarchical semantic concepts as the interpretable and disentangled representation of time-series, DTS introduces multi-level disentanglement strategies by covering both individual latent factors and group semantic segments. We further theoretically show how to alleviate the KL vanishing problem: DTS introduces a mutual information maximization term, while preserving a heavier penalty on the total correlation and the dimension-wise KL to keep the disentanglement property. Experimental results on various real-world benchmark datasets demonstrate that the representations learned by DTS achieve superior performance in downstream applications, with high interpretability of semantic concepts.
185 - Daochen Zha , Wenye Ma , Lei Yuan 2021
Exploration under sparse reward is a long-standing challenge of model-free reinforcement learning. The state-of-the-art methods address this challenge by introducing intrinsic rewards to encourage exploration in novel states or uncertain environment dynamics. Unfortunately, methods based on intrinsic rewards often fall short in procedurally-generated environments, where a different environment is generated in each episode so that the agent is not likely to visit the same state more than once. Motivated by how humans distinguish good exploration behaviors by looking into the entire episode, we introduce RAPID, a simple yet effective episode-level exploration method for procedurally-generated environments. RAPID regards each episode as a whole and gives an episodic exploration score from both per-episode and long-term views. Those highly scored episodes are treated as good exploration behaviors and are stored in a small ranking buffer. The agent then imitates the episodes in the buffer to reproduce the past good exploration behaviors. We demonstrate our method on several procedurally-generated MiniGrid environments, a first-person-view 3D Maze navigation task from MiniWorld, and several sparse MuJoCo tasks. The results show that RAPID significantly outperforms the state-of-the-art intrinsic reward strategies in terms of sample efficiency and final performance. The code is available at https://github.com/daochenzha/rapid
Outlier detection is an important data mining task with numerous practical applications such as intrusion detection, credit card fraud detection, and video surveillance. However, given a specific complicated task with big data, the process of buildin g a powerful deep learning based system for outlier detection still highly relies on human expertise and laboring trials. Although Neural Architecture Search (NAS) has shown its promise in discovering effective deep architectures in various domains, such as image classification, object detection, and semantic segmentation, contemporary NAS methods are not suitable for outlier detection due to the lack of intrinsic search space, unstable search process, and low sample efficiency. To bridge the gap, in this paper, we propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model within a predefined search space. Specifically, we firstly design a curiosity-guided search strategy to overcome the curse of local optimality. A controller, which acts as a search agent, is encouraged to take actions to maximize the information gain about the controllers internal belief. We further introduce an experience replay mechanism based on self-imitation learning to improve the sample efficiency. Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance, comparing with existing handcrafted models and traditional search methods.
Policy distillation, which transfers a teacher policy to a student policy has achieved great success in challenging tasks of deep reinforcement learning. This teacher-student framework requires a well-trained teacher model which is computationally ex pensive. Moreover, the performance of the student model could be limited by the teacher model if the teacher model is not optimal. In the light of collaborative learning, we study the feasibility of involving joint intellectual efforts from diverse perspectives of student models. In this work, we introduce dual policy distillation(DPD), a student-student framework in which two learners operate on the same environment to explore different perspectives of the environment and extract knowledge from each other to enhance their learning. The key challenge in developing this dual learning framework is to identify the beneficial knowledge from the peer learner for contemporary learning-based reinforcement learning algorithms, since it is unclear whether the knowledge distilled from an imperfect and noisy peer learner would be helpful. To address the challenge, we theoretically justify that distilling knowledge from a peer learner will lead to policy improvement and propose a disadvantageous distillation strategy based on the theoretical results. The conducted experiments on several continuous control tasks show that the proposed framework achieves superior performance with a learning-based agent and function approximation without the use of expensive teacher models.
Outlier detection is an important task for various data mining applications. Current outlier detection techniques are often manually designed for specific domains, requiring large human efforts of database setup, algorithm selection, and hyper-parame ter tuning. To fill this gap, we present PyODDS, an automated end-to-end Python system for Outlier Detection with Database Support, which automatically optimizes an outlier detection pipeline for a new data source at hand. Specifically, we define the search space in the outlier detection pipeline, and produce a search strategy within the given search space. PyODDS enables end-to-end executions based on an Apache Spark backend server and a light-weight database. It also provides unified interfaces and visualizations for users with or without data science or machine learning background. In particular, we demonstrate PyODDS on several real-world datasets, with quantification analysis and visualization results.
109 - Yuening Li , Daochen Zha , Na Zou 2019
PyODDS is an end-to end Python system for outlier detection with database support. PyODDS provides outlier detection algorithms which meet the demands for users in different fields, w/wo data science or machine learning background. PyODDS gives the a bility to execute machine learning algorithms in-database without moving data out of the database server or over the network. It also provides access to a wide range of outlier detection algorithms, including statistical analysis and more recent deep learning based approaches. PyODDS is released under the MIT open-source license, and currently available at (https://github.com/datamllab/pyodds) with official documentations at (https://pyodds.github.io/).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا