ترغب بنشر مسار تعليمي؟ اضغط هنا

Taking Mn doped Germanium as an example, we evoke the consideration of a two-band-like conduction in diluted ferromagnetic semiconductor (FMS). The main argument for claiming Ge:Mn as a FMS is the occurrence of the anomalous Hall effect (AHE). Usuall y, the reported AHE (1) is observable at temperatures above 10 K, (2) exhibits no hysteresis, and (3) changes the sign of slope. We observed a similar Hall resistance in Mn implanted Ge with the Mn concentration as low as 0.004%. We show that the puzzling AHE features can be explained by considering a two-band-like conduction in Ge:Mn.
The magneto-transport properties of nanocomposite C:Co (15 and 40 at.% Co) thin films are investigated. The films were grown by ion beam co-sputtering on thermally oxidized silicon substrates in the temperature range from 200 to 500 degC. Two major e ffects are reported: (i) a large anomalous Hall effect amounting to 2 mu ohm cm, and (ii) a negative magnetoresistance. Both the field-dependent resistivity and Hall resistivity curves coincide with the rescaled magnetization curves, a finding that is consistent with spin-dependent transport. These findings suggest that C:Co nanocomposites are promising candidates for carbon-based Hall sensors and spintronic devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا