ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate an unexpectedly strong surface-plasmonic absorption at the interface of silver and high-index dielectrics based on electron and photon spectroscopy. The measured bandwidth and intensity of absorption deviate significantly from the clas sical theory. Our density-functional calculation well predicts the occurrence of this phenomenon. It reveals that due to the low metal-to-dielectric work function at such interfaces, conduction electrons can display a drastic quantum spillover, causing the interfacial electron-hole pair production to dominate the decay of surface plasmons. This finding can be of fundamental importance in understanding and designing quantum nano-plasmonic devices that utilize noble metals and high-index dielectrics.
We present a theoretical study of the optical angular momentum transfer from a circularly polarized plane wave to thin metal nanoparticles of different rotational symmetries. While absorption has been regarded as the predominant mechanism of torque g eneration on the nanoscale, we demonstrate numerically how the contribution from scattering can be enhanced by using multipolar plasmon resonance. The multipolar modes in non-circular particles can convert the angular momentum carried by the scattered field, thereby producing scattering-dominant optical torque, while a circularly symmetric particle cannot. Our results show that the optical torque induced by resonant scattering can contribute to 80% of the total optical torque in gold particles. This scattering-dominant torque generation is extremely mode-specific, and deserves to be distinguished from the absorption-dominant mechanism. Our findings might have applications in optical manipulation on the nanoscale as well as new designs in plasmonics and metamaterials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا