ﻻ يوجد ملخص باللغة العربية
We present a theoretical study of the optical angular momentum transfer from a circularly polarized plane wave to thin metal nanoparticles of different rotational symmetries. While absorption has been regarded as the predominant mechanism of torque generation on the nanoscale, we demonstrate numerically how the contribution from scattering can be enhanced by using multipolar plasmon resonance. The multipolar modes in non-circular particles can convert the angular momentum carried by the scattered field, thereby producing scattering-dominant optical torque, while a circularly symmetric particle cannot. Our results show that the optical torque induced by resonant scattering can contribute to 80% of the total optical torque in gold particles. This scattering-dominant torque generation is extremely mode-specific, and deserves to be distinguished from the absorption-dominant mechanism. Our findings might have applications in optical manipulation on the nanoscale as well as new designs in plasmonics and metamaterials.
Prospects of using metal hole arrays for the enhanced optical detection of molecular chirality in nanosize volumes are investigated. Light transmission through the holes filled with an optically active material is modeled and the activity enhancement
Recently, studies have been carried out on attempts to combine surface-enhanced Surface-enhanced Raman spectroscopy (SERS) substrates that can be based on either localized surface plasmon (LSP) or surface plasmon polaritons (SPP) structures. By combi
Modern-day computers use electrical signaling for processing and storing data which is bandwidth limited and power-hungry. These limitations are bypassed in the field of communications, where optical signaling is the norm. To exploit optical signalin
In this letter, we investigate the coherent tunneling process of photons between a defected circular resonator and a waveguide based on the recently developed discrete coordinate scattering methods (L. Zhou et al., Phys. Rev. Lett. 101, 100501 (2008)
Scattering processes in an optical microcavity are investigated for the case of silicon nanocrystals embedded in an ultra-high Q toroid microcavity. Using a novel measurement technique based on the observable mode-splitting, we demonstrate that light