ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant cooling of different nuclear isotopes manifested in optically-induced nuclear magnetic resonances (NMR) is observed in n-doped CdTe/(Cd,Mg)Te and ZnSe/(Zn,Mg)Se quantum wells and for donor-bound electrons in ZnSe:F and GaAs epilayers. By tim e-resolved Kerr rotation used in the regime of resonant spin amplification we can expand the range of magnetic fields where the effect can be observed up to nuclear Larmor frequencies of 170 kHz. The mechanism of the resonant cooling of the nuclear spin system is analyzed theoretically. The developed approach allows us to model the resonant spin amplification signals with NMR resonances.
The coherent spin dynamics of resident carriers, electrons and holes, in semiconductor quantum structures is studied by periodical optical excitation using short laser pulses and in an external magnetic field. The generation and dephasing of spin pol arization in an ensemble of carrier spins, for which the relaxation time of individual spins exceeds the repetition period of the laser pulses, are analyzed theoretically. Spin polarization accumulation is manifested either as resonant spin amplification or as mode-locking of carrier spin coherences. It is shown that both regimes have the same origin, while their appearance is determined by the optical pump power and the spread of spin precession frequencies in the ensemble.
The electron spin coherence in n-doped and undoped, self-assembled CdSe/Zn(S,Se) quantum dots has been studied by time-resolved pump-probe Kerr rotation. Long-lived spin coherence persisting up to 13 ns after spin orientation has been found in the n- doped quantum dots, outlasting significantly the lifetimes of charge neutral and negatively charged excitons of 350 - 530 ps. The electron spin dephasing time as long as 5.6 ns has been measured in a magnetic field of 0.25 T. Hyperfine interaction of resident electrons with a nuclear spin fluctuations is suggested as the main limiting factor for the dephasing time. The efficiency of this mechanism in II-VI and III-V quantum dots is analyzed.
The magnetization dynamics in diluted magnetic semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te has been studied experimentally by optical methods and simulated numerically. In the samples with nonhomogeneous magnetic ion distribution this dynamics is contributed by spin-lattice relaxation and spin diffusion in the Mn spin system. The spin diffusion coefficient of 7x10^(-8) cm^2/s has been evaluated for Zn(0.99)Mn(0.01)Se from comparison of experimental and numerical results. Calculations of the giant Zeeman splitting of the exciton states and the magnetization dynamics in the ordered alloys and parabolic quantum wells fabricated by the digital growth technique show perfect agreement with the experimental data. In both structure types the spin diffusion has an essential contribution to the magnetization dynamics.
A quasi-classical theoretical description of polarization and relaxation of nuclear spins in a quantum dot with one resident electron is developed for arbitrary mechanisms of electron spin polarization. The dependence of the electron-nuclear spin dyn amics on the correlation time $tau_c$ of electron spin precession, with frequency $Omega$, in the nuclear hyperfine field is analyzed. It is demonstrated that the highest nuclear polarization is achieved for a correlation time close to the period of electron spin precession in the nuclear field. For these and larger correlation times, the indirect hyperfine field, which acts on nuclear spins, also reaches a maximum. This maximum is of the order of the dipole-dipole magnetic field that nuclei create on each other. This value is non-zero even if the average electron polarization vanishes. It is shown that the transition from short correlation time to $Omegatau_c>1$ does not affect the general structure of the equation for nuclear spin temperature and nuclear polarization in the Knight field, but changes the values of parameters, which now become functions of $Omegatau_c$. For correlation times larger than the precession time of nuclei in the electron hyperfine field, it is found that three thermodynamic potentials ($chi$, $bm{xi}$, $varsigma$) characterize the polarized electron-nuclear spin system. The values of these potentials are calculated assuming a sharp transition from short to long correlation times, and the relaxation mechanisms of these potentials are discussed. The relaxation of the nuclear spin potential is simulated numerically showing that high nuclear polarization decreases relaxation rate.
Experimental and theoretical studies of all-optical spin pump and probe of resident electrons in CdTe/(Cd,Mg)Te semiconductor quantum wells are reported. A two-color Hanle-MOKE technique (based on continuous-wave excitation) and time-resolved Kerr ro tation in the regime of resonant spin amplification (based on pulsed excitation) provide a complementary measure of electron spin relaxation time. Influence of electron localization on long-lived spin coherence is examined by means of spectral and temperature dependencies. Various scenarios of spin polarization generation (via the trion and exciton states) are analyzed and difference between continuous-wave and pulsed excitations is considered. Effects related to inhomogeneous distribution of $g$-factor and anisotropic spin relaxation time on measured quantities are discussed.
The carrier spin coherence in a p-doped GaAs/(Al,Ga)As quantum well with a diluted hole gas has been studied by picosecond pump-probe Kerr rotation with an in-plane magnetic field. For resonant optical excitation of the positively charged exciton the spin precession shows two types of oscillations. Fast oscillating electron spin beats decay with the radiative lifetime of the charged exciton of 50 ps. Long lived spin coherence of the holes with dephasing times up to 650 ps. The spin dephasing time as well as the in-plane hole g factor show strong temperature dependence, underlining the importance of hole localization at cryogenic temperatures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا