ﻻ يوجد ملخص باللغة العربية
The magnetization dynamics in diluted magnetic semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te has been studied experimentally by optical methods and simulated numerically. In the samples with nonhomogeneous magnetic ion distribution this dynamics is contributed by spin-lattice relaxation and spin diffusion in the Mn spin system. The spin diffusion coefficient of 7x10^(-8) cm^2/s has been evaluated for Zn(0.99)Mn(0.01)Se from comparison of experimental and numerical results. Calculations of the giant Zeeman splitting of the exciton states and the magnetization dynamics in the ordered alloys and parabolic quantum wells fabricated by the digital growth technique show perfect agreement with the experimental data. In both structure types the spin diffusion has an essential contribution to the magnetization dynamics.
We study theoretically the ultrafast spin dynamics of II-VI diluted magnetic quantum wells in the presence of spin-orbit interaction. We extend a recent study where it was shown that the spin-orbit interaction and the exchange sd coupling in bulk and
We report on the study of spin-polarized electric currents in diluted magnetic semiconductor (DMS) quantum wells subjected to an in-plane external magnetic field and illuminated by microwave or terahertz radiation. The effect is studied in (Cd,Mn)Te/
We report on the dynamics of optically induced nuclear spin polarization in individual CdTe/ZnTe quantum dots loaded with one electron by modulation doping. The fine structure of the hot trion (charged exciton $X^-$ with an electron in the $P$-shell)
Tunable magnetic interactions in high-mobility nonmagnetic semiconductor heterostructures are centrally important to spin-based quantum technologies. Conventionally, this requires incorporation of magnetic impurities within the two-dimensional (2D) e
We report on a study of the temperature-dependence of current-induced effective magnetic fields due to spin-orbit interactions in the diluted ferromagnetic semiconductor (Ga,Mn)As. Contributions from the effective fields as well as from the anomalous