ترغب بنشر مسار تعليمي؟ اضغط هنا

The computational cost of quantum Monte Carlo (QMC) calculations of realistic periodic systems depends strongly on the method of storing and evaluating the many-particle wave function. Previous work [A. J. Williamson et al., Phys. Rev. Lett. 87, 2464 06 (2001); D. Alf`e and M. J. Gillan, Phys. Rev. B 70, 161101 (2004)] has demonstrated the reduction of the O(N^3) cost of evaluating the Slater determinant with planewaves to O(N^2) using localized basis functions. We compare four polynomial approximations as basis functions -- interpolating Lagrange polynomials, interpolating piecewise-polynomial-form (pp-) splines, and basis-form (B-) splines (interpolating and smoothing). All these basis functions provide a similar speedup relative to the planewave basis. The pp-splines have eight times the memory requirement of the other methods. To test the accuracy of the basis functions, we apply them to the ground state structures of Si, Al, and MgO. The polynomial approximations differ in accuracy most strongly for MgO and smoothing B-splines most closely reproduce the planewave value for of the variational Monte Carlo energy. Using separate approximations for the Laplacian of the orbitals increases the accuracy sufficiently to justify the increased memory requirement, making smoothing B-splines, with separate approximation for the Laplacian, the preferred choice for approximating planewave-represented orbitals in QMC calculations.
We have developed a prototype time-resolved neutron imaging detector employing a micro-pattern gaseous detector known as the micro-pixel chamber ({mu}PIC) coupled with a field-programmable-gate-array-based data acquisition system. Our detector system combines 100{mu}m-level spatial and sub-{mu}s time resolutions with a low gamma sensitivity of less than 10^-12 and high data rates, making it well suited for applications in neutron radiography at high-intensity, pulsed neutron sources. In the present paper, we introduce the detector system and present several test measurements performed at NOBORU (BL10), J-PARC to demonstrate the capabilities of our prototype. We also discuss future improvements to the spatial resolution and rate performance.
We present a detailed study of the spatial resolution of our time-resolved neutron imaging detector utilizing a new neutron position reconstruction method that improves both spatial resolution and event reconstruction efficiency. Our prototype detect or system, employing a micro-pattern gaseous detector known as the micro-pixel chamber ({mu}PIC) coupled with a field-programmable-gate-array-based data acquisition system, combines 100{mu}m-level spatial and sub-{mu}s time resolutions with excellent gamma rejection and high data rates, making it well suited for applications in neutron radiography at high-intensity, pulsed neutron sources. From data taken at the Materials and Life Science Experimental Facility within the Japan Proton Accelerator Research Complex (J-PARC), the spatial resolution was found to be approximately Gaussian with a sigma of 103.48 +/- 0.77 {mu}m (after correcting for beam divergence). This is a significant improvement over that achievable with our previous reconstruction method (334 +/- 13 {mu}m), and compares well with conventional neutron imaging detectors and with other high-rate detectors currently under development. Further, a detector simulation indicates that a spatial resolution of less than 60 {mu}m may be possible with optimization of the gas characteristics and {mu}PIC structure. We also present an example of imaging combined with neutron resonance absorption spectroscopy.
We have developed a prototype time-resolved neutron imaging detector employing the micro-pixel chamber (muPIC), a micro-pattern gaseous detector, coupled with a field programmable gate array-based data acquisition system for applications in neutron r adiography at high-intensity neutron sources. The prototype system, with an active area of 10cm x 10cm and operated at a gas pressure of 2 atm, measures both the energy deposition (via time-over-threshold) and 3-dimensional track of each neutron-induced event, allowing the reconstruction of the neutron interaction point with improved accuracy. Using a simple position reconstruction algorithm, a spatial resolution of 349 +/- 36 microns was achieved, with further improvement expected. The detailed tracking allows strong rejection of background gamma-rays, resulting in an effective gamma sensitivity of 10^-12 or less, coupled with stable, robust neutron identification. The detector also features a time resolution of 0.6 microseconds.
Quantum Monte Carlo approaches such as the diffusion Monte Carlo (DMC) method are among the most accurate many-body methods for extended systems. Their scaling makes them well suited for defect calculations in solids. We review the various approximat ions needed for DMC calculations of solids and the results of previous DMC calculations for point defects in solids. Finally, we present estimates of how approximations affect the accuracy of calculations for self-interstitial formation energies in silicon and predict DMC values of 4.4(1), 5.1(1) and 4.7(1) eV for the X, T and H interstitial defects, respectively, in a 16(+1)-atom supercell.
We investigate the electronic structure of EuFe$_{2}$As$_{2}$ using optical spectroscopy and first-principles calculations. At low temperature we observe the evolution of textit{two} gap-like features, one having a BCS mean-field behavior and another with strongly non-BCS behavior. Using band structure calculations, we identify the former with a spin-Peierls-like partial gap in $d_{yz}$ bands, and the latter with the transition across the large exchange gap in $d_{xz}/d_{xy}$ bands. Our results demonstrate that the antiferromagnetism in the ferropnictides is neither fully local nor fully itinerant, but contains elements of both.
We consider a two-band superconductor with relative phase $pi $ between the two order parameters as a model for the superconducting state in ferropnictides. Within this model we calculate the microwave response and the NMR relaxation rate. The influe nce of intra- and interband impurity scattering beyond the Born and unitary limits is taken into account. We show that, depending on the scattering rate, various types of power law temperature dependencies of the magnetic field penetration depth and the NMR relaxation rate at low temperatures may take place.
The newly discovered iron pnictide superconductors apparently present an unusual case of interband-channel pairing superconductivity. Here we show that, in the limit where the pairing occurs within the interband channel, several surprising effects oc cur quite naturally and generally: different density-of-states on the two bands lead to several unusual properties, including a gap ratio which behaves inversely to the ratio of density-of-states; the weak-coupling limit of the Eliashberg and the BCS theory, commonly taken as equivalent, in fact predict qualitatively different dependence of the $Delta_{1}/Delta_{2}$ and $Delta/T_{c}$ ratios on coupling constants. We show analytically that these effects follow directly from the interband character of superconductivity. Our results show that in the interband-only pairing model the maximal gap ratio is $sqrt{N_{2}/N_{1}}$ as strong-coupling effects act only to reduce this ratio. This suggests that if the large experimentally reported gap ratios (up to a factor 2) are correct, the pairing mechanism must include more intraband interaction than is usually assumed.
126 - J. D. Parker 2007
We measured the lifetime and the mesonic and non-mesonic decay rates of the 4He-Lambda hypernucleus. The hypernuclei were created using a 750 MeV/c momentum K- beam on a liquid 4He target by the reaction 4He(K-,pi-)4He-Lambda. The 4He-Lambda lifetime was directly measured using protons from Lambda p -> n p non-mesonic decay (also referred to as proton-stimulated decay) and was found to have a value of tau = 245 +/- 24 ps. The mesonic decay rates were determined from the observed numbers of pi-s and pi0s as Gamma_pi-/Gamma_tot = 0.270 +/- 0.024 and Gamma_pi0/Gamma_tot = 0.564 +/- 0.036, respectively, and the values of the proton- and neutron-stimulated decay rates were extracted as Gamma_p/Gamma_tot = 0.169 +/- 0.019 and Gamma_n/Gamma_tot <= 0.032 (95% CL), respectively. The effects of final-state interactions and possible 3-body Lambda N N decay contributions were studied in the context of a simple model of nucleon-stimulated decay. Nucleon-nucleon coincidence events were observed and were used in the determination of the non-mesonic branching fractions. The implications of the results of this analysis were considered for the empirical Delta I = 1/2 rule and the decay rates of the 4H-Lambda hypernucleus.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا