ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of polynomial approximations to speed up planewave-based quantum Monte Carlo calculations

341   0   0.0 ( 0 )
 نشر من قبل William Parker
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The computational cost of quantum Monte Carlo (QMC) calculations of realistic periodic systems depends strongly on the method of storing and evaluating the many-particle wave function. Previous work [A. J. Williamson et al., Phys. Rev. Lett. 87, 246406 (2001); D. Alf`e and M. J. Gillan, Phys. Rev. B 70, 161101 (2004)] has demonstrated the reduction of the O(N^3) cost of evaluating the Slater determinant with planewaves to O(N^2) using localized basis functions. We compare four polynomial approximations as basis functions -- interpolating Lagrange polynomials, interpolating piecewise-polynomial-form (pp-) splines, and basis-form (B-) splines (interpolating and smoothing). All these basis functions provide a similar speedup relative to the planewave basis. The pp-splines have eight times the memory requirement of the other methods. To test the accuracy of the basis functions, we apply them to the ground state structures of Si, Al, and MgO. The polynomial approximations differ in accuracy most strongly for MgO and smoothing B-splines most closely reproduce the planewave value for of the variational Monte Carlo energy. Using separate approximations for the Laplacian of the orbitals increases the accuracy sufficiently to justify the increased memory requirement, making smoothing B-splines, with separate approximation for the Laplacian, the preferred choice for approximating planewave-represented orbitals in QMC calculations.



قيم البحث

اقرأ أيضاً

An inhomogeneous backflow transformation for many-particle wave functions is presented and applied to electrons in atoms, molecules, and solids. We report variational and diffusion quantum Monte Carlo VMC and DMC energies for various systems and stud y the computational cost of using backflow wave functions. We find that inhomogeneous backflow transformations can provide a substantial increase in the amount of correlation energy retrieved within VMC and DMC calculations. The backflow transformations significantly improve the wave functions and their nodal surfaces.
The steadily increasing size of scientific Monte Carlo simulations and the desire for robust, correct, and reproducible results necessitates rigorous testing procedures for scientific simulations in order to detect numerical problems and programming bugs. However, the testing paradigms developed for deterministic algorithms have proven to be ill suited for stochastic algorithms. In this paper we demonstrate explicitly how the technique of statistical hypothesis testing, which is in wide use in other fields of science, can be used to devise automatic and reliable tests for Monte Carlo methods, and we show that these tests are able to detect some of the common problems encountered in stochastic scientific simulations. We argue that hypothesis testing should become part of the standard testing toolkit for scientific simulations.
We present an overview of the variational and diffusion quantum Monte Carlo methods as implemented in the CASINO program. We particularly focus on developments made in the last decade, describing state-of-the-art quantum Monte Carlo algorithms and so ftware and discussing their strengths and their weaknesses. We review a range of recent applications of CASINO.
Quantum Monte Carlo (QMC) methods are some of the most accurate methods for simulating correlated electronic systems. We investigate the compatibility, strengths and weaknesses of two such methods, namely, diffusion Monte Carlo (DMC) and auxiliary-fi eld quantum Monte Carlo (AFQMC). The multi-determinant trial wave functions employed in both approaches are generated using the configuration interaction using a perturbative selection made iteratively (CIPSI) technique. Complete basis set full configuration interaction (CBS-FCI) energies estimated with CIPSI are used as a reference in this comparative study between DMC and AFQMC. By focusing on a set of canonical finite size solid state systems, we show that both QMC methods can be made to systematically converge towards the same energy once basis set effects and systematic biases have been removed. AFQMC shows a much smaller dependence on the trial wavefunction than DMC while simultaneously exhibiting a much larger basis set dependence. We outline some of the remaining challenges and opportunities for improving these approaches.
We propose an adaptive planewave method for eigenvalue problems in electronic structure calculations. The method combines a priori convergence rates and accurate a posteriori error estimates into an effective way of updating the energy cut-off for pl anewave discretizations, for both linear and nonlinear eigenvalue problems. The method is error controllable for linear eigenvalue problems in the sense that for a given required accuracy, an energy cut-off for which the solution matches the target accuracy can be reached efficiently. Further, the method is particularly promising for nonlinear eigenvalue problems in electronic structure calculations as it shall reduce the cost of early iterations in self-consistent algorithms. We present some numerical experiments for both linear and nonlinear eigenvalue problems. In particular, we provide electronic structure calculations for some insulator and metallic systems simulated with Kohn--Sham density functional theory (DFT) and the projector augmented wave (PAW) method, illustrating the efficiency and potential of the algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا