ترغب بنشر مسار تعليمي؟ اضغط هنا

We have measured the line-of-sight velocity distribution from integrated stellar light at two points in the outer halo of M87 (NGC 4486), the second-rank galaxy in the Virgo Cluster. The data were taken at R = 480 ($sim 41.5$ kpc) and R = 526 ($sim 4 5.5$ kpc) along the SE major axis. The second moment for a non-parametric estimate of the full velocity distribution is $420 pm 23$ km/s and $577 pm 35$ km/s respectively. There is intriguing evidence in the velocity profiles for two kinematically distinct stellar components at the position of our pointing. Under this assumption we employ a two-Gaussian decomposition and find the primary Gaussian having rest velocities equal to M87 (consistent with zero rotation) and second moments of $383 pm 32$ km/s and $446 pm 43$ km/s respectively. The asymmetry seen in the velocity profiles suggests that the stellar halo of M87 is not in a relaxed state and confuses a clean dynamical interpretation. That said, either measurement (full or two component model) shows a rising velocity dispersion at large radii, consistent with previous integrated light measurements, yet significantly higher than globular cluster measurements at comparable radial positions. These integrated light measurements at large radii, and the stark contrast they make to the measurements of other kinematic tracers, highlight the rich kinematic complexity of environments like the center of the Virgo Cluster and the need for caution when interpreting kinematic measurements from various dynamical tracers.
We report on extensive testing carried out on the optical fibers for the VIRUS instrument. The primary result of this work explores how 10+ years of simulated wear on a VIRUS fiber bundle affects both transmission and focal ratio degradation (FRD) of the optical fibers. During the accelerated lifetime tests we continuously monitored the fibers for signs of FRD. We find that transient FRD events were common during the portions of the tests when motion was at telescope slew rates, but dropped to negligible levels during rates of motion typical for science observation. Tests of fiber transmission and FRD conducted both before and after the lifetime tests reveal that while transmission values do not change over the 10+ years of simulated wear, a clear increase in FRD is seen in all 18 fibers tested. This increase in FRD is likely due to microfractures that develop over time from repeated flexure of the fiber bundle, and stands in contrast to the transient FRD events that stem from localized stress and subsequent modal diffusion of light within the fibers. There was no measurable wavelength dependence on the increase in FRD over 350 nm to 600 nm. We also report on bend radius tests conducted on individual fibers and find the 266 microns VIRUS fibers to be immune to bending-induced FRD at bend radii of R > 10cm. Below this bend radius FRD increases slightly with decreasing radius. Lastly, we give details of a degradation seen in the fiber bundle currently deployed on the Mitchell Spectrograph (formally VIRUS-P) at McDonald Observatory. The degradation is shown to be caused by a localized shear in a select number of optical fibers that leads to an explosive form of FRD. In a few fibers, the overall transmission loss through the instrument can exceed 80%.
We present stellar kinematics and orbit superposition models for the central regions of four Brightest Cluster Galaxies (BCGs), based upon integral-field spectroscopy at Gemini, Keck, and McDonald Observatories. Our integral-field data span radii fro m < 100 pc to tens of kpc. We report black hole masses, M_BH, of 2.1 +/- 1.6 x 10^10 M_Sun for NGC 4889, 9.7 + 3.0 - 2.6 x 10^9 M_Sun for NGC 3842, and 1.3 + 0.5 - 0.4 x 10^9 M_Sun for NGC 7768. For NGC 2832 we report an upper limit of M_BH < 9 x 10^9 M_Sun. Stellar orbits near the center of each galaxy are tangentially biased, on comparable spatial scales to the galaxies photometric cores. We find possible photometric and kinematic evidence for an eccentric torus of stars in NGC 4889, with a radius of nearly 1 kpc. We compare our measurements of M_BH to the predicted black hole masses from various fits to the relations between M_BH and stellar velocity dispersion, luminosity, or stellar mass. The black holes in NGC 4889 and NGC 3842 are significantly more massive than all dispersion-based predictions and most luminosity-based predictions. The black hole in NGC 7768 is consistent with a broader range of predictions.
Electrically detected magnetic resonance is used to identify recombination centers in a set of Czochralski grown silicon samples processed to contain strained oxide precipitates with a wide range of densities (~ 1e9 cm-3 to ~ 7e10 cm-3). Measurements reveal that photo-excited charge carriers recombine through Pb0 and Pb1 dangling bonds and comparison to precipitate-free material indicates that these are present at both the sample surface and the oxide precipitates. The electronic recombination rates vary approximately linearly with precipitate density. Additional resonance lines arising from iron-boron and interstitial iron are observed and discussed. Our observations are inconsistent with bolometric heating and interpreted in terms of spin-dependent recombination. Electrically detected magnetic resonance is thus a very powerful and sensitive spectroscopic technique to selectively probe recombination centers in modern photovoltaic device materials.
57 - Tahir Yaqoob 2010
We present new results from Monte Carlo calculations of the flux and equivalent width (EW) of the Ni Kalpha fluorescent emission line in the toroidal X-ray reprocessor model of Murphy & Yaqoob (2009, MNRAS, 397, 1549). In the Compton-thin regime, the EW of the Ni Kalpha line is a factor of ~22 less than that of the Fe Kalpha line but this factor can be as low as ~6 in the Compton-thick regime. We show that the optically-thin limit for this ratio depends only on the Fe to Ni abundance ratio, it being independent of the geometry and covering factor of the reprocessor, and also independent of the shape of the incident X-ray continuum. We give some useful analytic expressions for the absolute flux and the EW of the Ni Kalpha line in the optically-thin limit. When the reprocessor is Compton-thick and the incident continuum is a power-law with a photon index of 1.9, the Ni Kalpha line EW has a maximum value of ~3 eV and ~250 eV for non-intercepting and intercepting lines-of-sight respectively. Larger EWs are obtained for flatter continua. We have also studied the Compton shoulder of the Ni Ka line and find that the ratio of scattered to unscattered flux in the line has a maximum value of 0.26, less than the corresponding maximum for the Fe Kalpha line. However, we find that the shape of the Compton shoulder profile for a given column density and inclination angle of the torus is similar to the corresponding profile for the Fe Ka line. Our results will be useful for interpreting X-ray spectra of active galactic nuclei (AGNs) and X-ray binary systems in which the system parameters are favorable for the Ni Kalpha line to be detected.
127 - Tahir Yaqoob 2010
Heavily obscured active galactic nuclei (AGNs) play an important role in contributing to the cosmic X-ray background (CXRB). However, the AGNs found in deep X-ray surveys are often too weak to allow direct measurement of the column density of obscuri ng matter. One method adopted in recent years to identify heavily obscured, Compton-thick AGNs under such circumstances is to use the observed mid-infrared to X-ray luminosity ratio as a proxy for the column density. This is based on the supposition that the amount of energy lost by the illuminating X-ray continuum to the obscuring matter and reprocessed into infrared emission is directly related to the column density and that the proxy is not sensitive to other physical parameters of the system (aside from contamination by dust emission from, for example, star-forming regions). Using Monte Carlo simulations, we find that the energy losses experienced by the illuminating X-ray continuum in the obscuring matter are far more sensitive to the shape of the X-ray continuum and to the covering factor of the X-ray reprocessor than they are to the column density of the material. Specifically we find that it is possible for the infrared to X-ray luminosity ratio for a Compton-thin source to be just as large as that for a Compton-thick source even without any contamination from dust. Since the intrinsic X-ray continuum and covering factor of the reprocessor are poorly constrained from deep X-ray survey data, we conclude that the mid-infrared to X-ray luminosity ratio is not a reliable proxy for the column density of obscuring matter in AGNs even when there is no other contribution to the mid-infrared luminosity aside from X-ray reprocessing. This conclusion is independent of the geometry of the obscuring matter.
We present new, high signal-to-noise ratio results from a Monte Carlo study of the properties of the Compton shoulder of the Fe Kalpha emission line in the toroidal X-ray reprocessor model of Murphy & Yaqoob (2009, MNRAS, 397, 1549). The model compre hensively covers the Compton-thin to Compton-thick regimes and we find that the variety of Compton shoulder profiles is greater than that for both (centrally-illuminated) spherical and disk geometries. Our Monte Carlo simulations were done with a statistical accuracy that is high enough to reveal, for the case of an edge-on, Compton-thick torus, a new type of Compton shoulder that is not present in the spherical or disk geometries. Such a Compton shoulder is dominated by a narrow back-scattering feature at ~6.24 keV. Our results also reveal a dependence of the shape of the Compton shoulder (and its magnitude relative to the Fe Kalpha line core) on the spectral shape of the incident X-ray continuum. We also show the effects of velocity broadening on the Fe Kalpha line profile and find that if either the velocity width or instrument resolution is greater than a FWHM of ~2000 km/s, the Compton shoulder begins to become blended with the line core and the characteristic features of the Compton shoulder become harder to resolve. In particular, at a FWHM of ~7000 km/s the Compton shoulder is NOT resolved at all, its only signature being a weak asymmetry in the blended line profile. Thus, CCD X-ray detectors cannot unambiguously resolve the Compton shoulder. Our results are freely available in a format that is suitable for direct spectral-fitting of the continuum and line model to real data.
90 - T. Yaqoob 2009
The absolute luminosity of the Fe Kalpha emission line from matter illuminated by X-rays in astrophysical sources is nontrivial to calculate except when the line-emitting medium is optically-thin to absorption and scattering. We characterize the Fe K alpha line flux using a dimensionless efficiency, defined as the fraction of continuum photons above the Fe K shell absorption edge threshold energy that appear in the line. The optically-thin approximation begins to break down even for column densities as small as 2 x 10^22 cm^-2. We show how to obtain reliable estimates of the Fe Kalpha line efficiency in the case of cold, neutral matter, even for the Compton-thick regime. We find that, regardless of geometry and covering factor, the largest Fe Kalpha line efficiency is attained well before the medium becomes Compton-thick. For cosmic elemental abundances it is difficult to achieve an efficiency higher than a few percent under the most favorable conditions and lines of sight. For a given geometry, Compton-thick lines-of-sight may have Fe Kalpha line efficiencies that are orders of magnitude less than the maximum possible for that geometry. Configurations that allow unobscured views of a Compton-thick reflecting surface are capable of yielding the highest efficiencies. Our results can be used to estimate the predicted flux of the narrow Fe Kalpha line at ~6.4 keV from absorption models in AGN. In particular we show that contrary to a recent claim in the literature, absorption dominated models for the relativistic Fe Kalpha emission line in MCG -6-30-15 do not over-predict the narrow Fe Kalpha line for any column density or covering factor.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا