ترغب بنشر مسار تعليمي؟ اضغط هنا

The Compton shoulder of the Fe Kalpha fluorescent emission line in active galactic nuclei

161   0   0.0 ( 0 )
 نشر من قبل Tahir Yaqoob
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new, high signal-to-noise ratio results from a Monte Carlo study of the properties of the Compton shoulder of the Fe Kalpha emission line in the toroidal X-ray reprocessor model of Murphy & Yaqoob (2009, MNRAS, 397, 1549). The model comprehensively covers the Compton-thin to Compton-thick regimes and we find that the variety of Compton shoulder profiles is greater than that for both (centrally-illuminated) spherical and disk geometries. Our Monte Carlo simulations were done with a statistical accuracy that is high enough to reveal, for the case of an edge-on, Compton-thick torus, a new type of Compton shoulder that is not present in the spherical or disk geometries. Such a Compton shoulder is dominated by a narrow back-scattering feature at ~6.24 keV. Our results also reveal a dependence of the shape of the Compton shoulder (and its magnitude relative to the Fe Kalpha line core) on the spectral shape of the incident X-ray continuum. We also show the effects of velocity broadening on the Fe Kalpha line profile and find that if either the velocity width or instrument resolution is greater than a FWHM of ~2000 km/s, the Compton shoulder begins to become blended with the line core and the characteristic features of the Compton shoulder become harder to resolve. In particular, at a FWHM of ~7000 km/s the Compton shoulder is NOT resolved at all, its only signature being a weak asymmetry in the blended line profile. Thus, CCD X-ray detectors cannot unambiguously resolve the Compton shoulder. Our results are freely available in a format that is suitable for direct spectral-fitting of the continuum and line model to real data.



قيم البحث

اقرأ أيضاً

We analyzed the spectral shape of the Compton shoulder around the neutral Fe-K$_alpha$ line of the Compton-thick type II Seyfert nucleus of the Circinus galaxy. The characteristics of this Compton shoulder with respect to the reflected continuum and Fe-K$_alpha$ line core intensity are a powerful diagnostics tool for analyzing the structure of the molecular tori, which obscure the central engine. We applied our Monte-Carlo-based X-ray reflection spectral model to the Chandra High Energy Transmission Grating data and successfully constrained the various spectral parameters independently, using only the spectral data only around the Fe-K$_alpha$ emission line. The obtained column density and inclination angle are consistent with the previous observations and the Compton-thick type II Seyfert picture. In addition, we determined the metal abundance of the molecular torus for the case of the smooth and clumpy torus to be 1.75$^{+0.19}_{-0.17}$ and 1.74$pm$0.16 solar abundance, respectively. Such slightly over-solar abundance can be useful information for discussing the star formation rate in the molecular tori of active galactic nuclei.
76 - R.W. Goosmann 2006
The X-ray spectra of Active Galactic Nuclei (AGN) are complex and vary rapidly in time as seen in recent observations. Magnetic flares above the accretion disk can account for the extreme variability of AGN. They also explain the observed iron Kalpha fluorescence lines. We present radiative transfer modeling of the X-ray reflection due to emission from magnetic flares close to the marginally stable orbit. The hard X-ray primary radiation coming from the flare source illuminates the accretion disk. A Compton reflection/reprocessed component coming from the disk surface is computed for different emission directions. We assume that the density structure remains adjusted to the hydrostatic equilibrium without external illumination because the flare duration is only a quarter-orbit. The model takes into account the variations of the incident radiation across the hot spot underneath the flare source. The integrated spectrum seen by a distant observer is computed for flares at different orbital phases close to the marginally stable orbit of a Schwarzschild black hole and of a maximally rotating Kerr black hole. The calculations include relativistic and Doppler corrections of the spectra using a ray tracing technique. We explore the practical possibilities to map out the azimuthal irradiation pattern of the inner accretion disks and conclude that the next generation of X-ray satellites should reveal this structure from iron Kalpha line profiles and X-ray lightcurves.
186 - T. Yaqoob 2009
The absolute luminosity of the Fe Kalpha emission line from matter illuminated by X-rays in astrophysical sources is nontrivial to calculate except when the line-emitting medium is optically-thin to absorption and scattering. We characterize the Fe K alpha line flux using a dimensionless efficiency, defined as the fraction of continuum photons above the Fe K shell absorption edge threshold energy that appear in the line. The optically-thin approximation begins to break down even for column densities as small as 2 x 10^22 cm^-2. We show how to obtain reliable estimates of the Fe Kalpha line efficiency in the case of cold, neutral matter, even for the Compton-thick regime. We find that, regardless of geometry and covering factor, the largest Fe Kalpha line efficiency is attained well before the medium becomes Compton-thick. For cosmic elemental abundances it is difficult to achieve an efficiency higher than a few percent under the most favorable conditions and lines of sight. For a given geometry, Compton-thick lines-of-sight may have Fe Kalpha line efficiencies that are orders of magnitude less than the maximum possible for that geometry. Configurations that allow unobscured views of a Compton-thick reflecting surface are capable of yielding the highest efficiencies. Our results can be used to estimate the predicted flux of the narrow Fe Kalpha line at ~6.4 keV from absorption models in AGN. In particular we show that contrary to a recent claim in the literature, absorption dominated models for the relativistic Fe Kalpha emission line in MCG -6-30-15 do not over-predict the narrow Fe Kalpha line for any column density or covering factor.
UV, visible, and near-infrared spectroscopy is used to study the transitions of neutral oxygen leading to the emission of broad OI $lambda$8446, $lambda$11287 and $lambda$1304 in Active Galactic Nuclei. From the strength of the former two lines, cont rary to the general belief, we found that in six out of seven galaxies, L-beta fluorescence is not the only mechanism responsible for the formation of these three lines. Because OI $lambda$13165 is almost reduced to noise level, continuum fluorescence is ruled out as an additional excitation mechanism, but the presence of OI $lambda$7774 in one of the objects suggests that collisional ionization may have an important role in the formation of OI $lambda$8446. The usefulness of the OI lines as a reliable reddening indicator for the broad line region is discussed. The values of E(B-V) derived from the OI $lambda 1304/lambda$8446 ratio agree with those obtained using other reddening indicators. The observations point toward a break in the one-to-one photon relation between OI $lambda$8446 and OI $lambda$1304, attributable to several destruction mechanisms that may affect the latter line.
127 - Eze Romanus , Kei Saitou , 2015
The Galactic Ridge X-ray Emission (GRXE) spectrum has strong iron emission lines at 6.4, 6.7, and 7.0~keV, each corresponding to the neutral (or low-ionized), He-like, and H-like iron ions. The 6.4~keV fluorescence line is due to irradiation of neutr al (or low ionized) material (iron) by hard X-ray sources, indicating uniform presence of the cold matter in the Galactic plane. In order to resolve origin of the cold fluorescent matter, we examined the contribution of the 6.4~keV line emission from white dwarf surfaces in the hard X-ray emitting symbiotic stars (hSSs) and magnetic cataclysmic variables (mCVs) to the GRXE. In our spectral analysis of 4~hSSs and 19~mCVs observed with Suzaku, we were able to resolve the three iron emission lines. We found that the equivalent-widths (EWs) of the 6.4~keV lines of hSSs are systematically higher than those of mCVs, such that the average EWs of hSSs and mCVs are $179_{-11}^{+46}$~eV and $93_{-3}^{+20}$~eV, respectively. The EW of hSSs compares favorably with the typical EWs of the 6.4~keV line in the GRXE of 90--300~eV depending on Galactic positions. Average 6.4~keV line luminosities of the hSSs and mCVs are $9.2times 10^{39}$ and $1.6times 10^{39}$~photons~s$^{-1}$, respectively, indicating that hSSs are intrinsically more efficient 6.4~keV line emitters than mCVs. We compare expected contribution of the 6.4 keV lines from mCVs with the observed GRXE 6.4 keV line flux in the direction of $(l,b) approx (28.5arcdeg, 0arcdeg$). We conclude that almost all the 6.4 keV line flux in GRXE may be explained by mCVs within current undertainties of the stellar number densities, while contribution from hSSs may not be negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا