ترغب بنشر مسار تعليمي؟ اضغط هنا

102 - J. R. Trail , D. M. Bird 2009
Highly accurate experimental structure factors of silicon are available in the literature, and these provide the ideal test for any emph{ab initio} method for the construction of the all-electron charge density. In a recent paper [J. R. Trail and D. M. Bird, Phys. Rev. B {bf 60}, 7863 (1999)] a method has been developed for obtaining an accurate all-electron charge density from a first principles pseudopotential calculation by reconstructing the core region of an atom of choice. Here this method is applied to bulk silicon, and structure factors are derived and compared with experimental and Full-potential Linear Augmented Plane Wave results (FLAPW). We also compare with the result of assuming the core region is spherically symmetric, and with the result of constructing a charge density from the pseudo-valence density + frozen core electrons. Neither of these approximations provide accurate charge densities. The aspherical reconstruction is found to be as accurate as FLAPW results, and reproduces the residual error between the FLAPW and experimental results.
141 - J. R. Trail , D. M. Bird 2009
A new method is presented for obtaining all-electron results from a pseudopotential calculation. This is achieved by carrying out a localised calculation in the region of an atomic nucleus using the embedding potential method of Inglesfield [J.Phys. C {bf 14}, 3795 (1981)]. In this method the core region is emph{reconstructed}, and none of the simplifying approximations (such as spherical symmetry of the charge density/potential or frozen core electrons) that previous solutions to this problem have required are made. The embedding method requires an accurate real space Green function, and an analysis of the errors introduced in constructing this from a set of numerical eigenstates is given. Results are presented for an all-electron reconstruction of bulk aluminium, for both the charge density and the density of states.
344 - J. R. Trail , D. M. Bird 2009
The constrained electron density method of embedding a Kohn-Sham system in a substrate system (first described by P. Cortona, Phys. Rev. B {bf 44}, 8454 (1991) and T.A. Wesolowski and A. Warshel, J. Phys. Chem {bf 97}, 8050 (1993)) is applied with a plane-wave basis and both local and non-local pseudopotentials. This method divides the electron density of the system into substrate and embedded electron densities, the sum of which is the electron density of the system of interest. Coupling between the substrate and embedded systems is achieved via approximate kinetic energy functionals. Bulk aluminium is examined as a test case for which there is a strong interaction between the substrate and embedded systems. A number of approximations to the kinetic-energy functional, both semi-local and non-local, are investigated. It is found that Kohn-Sham results can be well reproduced using a non-local kinetic energy functional, with the total energy accurate to better than 0.1 eV per atom and good agreement between the electron densities.
179 - J. R. Trail , D. M. Bird 2009
One of the goals in the development of large scale electronic structure methods is to perform calculations explicitly for a localised region of a system, while still taking into account the rest of the system outside of this region. An example of thi s in surface physics would be to embed an adsorbate and a few surface atoms into an extended substrate, hence considerably reducing computational costs. Here we apply the constrained electron density method of embedding a Kohn-Sham system in a substrate system (first described by P. Cortonacite{1} and T.A. Wesolowskicite{2}), within a plane-wave basis and pseudopotential framework. This approach divides the charge density of the system into substrate and embedded charge densities, the sum of which is the charge density of the actual system of interest. Two test cases are considered. First we construct fcc bulk aluminium by embedding one cubic lattice of atoms within another. Second, we examine a model surface/adsorbate system of aluminium on aluminium and compare with full Kohn-Sham results.
A method is presented for calculating electron-hole pair excitation due to an incident atom or molecule interacting with a metal surface. Energy loss is described using an textit{ab initio} approach that obtains a position-dependent friction coeffici ent for an adsorbate moving near a metal surface from a total energy pseudopotential calculation. A semi-classical forced oscillator model is constructed, using the same friction coefficient description of the energy loss, to describe excitation of the electron gas due to the incident molecule. This approach is applied to H and D atoms incident on a Cu(111) surface, and we obtain theoretical estimates of the `chemicurrents measured by Nienhaus et al [Phys. Rev. Lett. textbf{82}, 446 (1999)] for these atoms incident on the surface of a Schottky diode.
Electron-hole pair creation by an adsorbate incident on a metal surface is described using textit{ab initio} methods. The approach starts with standard first principles electronic structure theory, and proceeds to combine classical, quantum oscillato r and time dependent density functional methods to provide a consistent description of the non-adiabatic energy transfer from adsorbate to substrate. Of particular interest is the conservation of the total energy at each level of approximation, and the importance of a spin transition as a function of the adsorbate/surface separation. Results are presented and discussed for H and D atoms incident on the Cu(111) surface.
The excitation of the electronic system induced by the adsorption of a hydrogen atom on the (111) surfaces of copper and silver is investigated using the time-dependent, mean-field Newns-Anderson model. Parameters for the model are obtained by fittin g to density functional theory calculations, allowing the charge and energy transfer between adsorbate and surface to be calculated, together with the spectrum of electronic excitations. These results are used to make direct comparisons with experimental measurements of chemicurrents, yielding good agreement for both the magnitude of the current and the ratio of the currents for H and D adsorption.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا