ترغب بنشر مسار تعليمي؟ اضغط هنا

Newns-Anderson model of chemicurrents in H/Cu and H/Ag

51   0   0.0 ( 0 )
 نشر من قبل Matthew Mizielinski
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The excitation of the electronic system induced by the adsorption of a hydrogen atom on the (111) surfaces of copper and silver is investigated using the time-dependent, mean-field Newns-Anderson model. Parameters for the model are obtained by fitting to density functional theory calculations, allowing the charge and energy transfer between adsorbate and surface to be calculated, together with the spectrum of electronic excitations. These results are used to make direct comparisons with experimental measurements of chemicurrents, yielding good agreement for both the magnitude of the current and the ratio of the currents for H and D adsorption.

قيم البحث

اقرأ أيضاً

The classic metallurgical systems -- noble metal alloys -- that have formed the benchmark for various alloy theories, are revisited. First-principles fully relaxed general potential LAPW total energies of a few ordered structures are used as input to a mixed-space cluster expansion calculation to study the phase stability, thermodynamic properties and bond lengths in Cu-Au, Ag-Au, Cu-Ag and Ni-Au alloys. (i) Our theoretical calculations correctly reproduce the tendencies of Ag-Au and Cu-Au to form compounds and Ni-Au and Cu-Ag to phase separate at T=0 K. (ii) Of all possible structures, Cu/sub 3/Au (L1/sub 2/) and CuAu (L1/sub 0/) are found to be the most stable low-temperature phases of Cu/sub 1-x/Au/sub x/ with transition temperatures of 530 K and 660 K, respectively, compared to the experimental values 663 K and 670 K. The significant improvement over previous first-principles studies is attributed to the more accurate treatment of atomic relaxations in the present work. (iii) LAPW formation enthalpies demonstrate that L1/sub 2/, the commonly assumed stable phase of CuAu/sub 3/, is not the ground state for Au-rich alloys, but rather that ordered <100> superlattices are stabilized. (iv) We extract the non-configurational (e.g., vibrational) entropies of formation and obtain large values for the size mismatched systems: 0.48 k/sub B//atom in Ni/sub 0.5/Au/sub 0.5/ (T=1100 K), 0.37 k/sub B//atom in Cu/sub 0.14/Ag/sub 0.86/ (T=1052 K), and 0.16 k/sub B//atom in Cu/sub 0.5/Au/sub 0.5/ (T=800 K). (v) Using 8 atom/cell special quasirandom structures we study the bond lengths in disordered Cu-Au and Ni-Au alloys and obtain good qualitative agreement with recent EXAFS measurements.
Electronic friction and the ensuing nonadiabatic energy loss play an important role in chemical reaction dynamics at metal surfaces. Using molecular dynamics with electronic friction evaluated on-the-fly from Density Functional Theory, we find strong mode dependence and a dominance of nonadiabatic energy loss along the bond stretch coordinate for scattering and dissociative chemisorption of H$_2$ on the Ag(111) surface. Exemplary trajectories with varying initial conditions indicate that this mode-specificity translates into modulated energy loss during a dissociative chemisorption event. Despite minor nonadiabatic energy loss of about 5%, the directionality of friction forces induces dynamical steering that affects individual reaction outcomes, specifically for low-incidence energies and vibrationally excited molecules. Mode-specific friction induces enhanced loss of rovibrational rather than translational energy and will be most visible in its effect on final energy distributions in molecular scattering experiments.
We report structural and magnetic properties of the spin-$frac12$ quantum antiferromagnet Cu[C$_6$H$_2$(COO)$_4$][C$_2$H$_5$NH$_3$]$_2$ by means of single-crystal x-ray diffraction, magnetization, heat capacity, and electron spin resonance (ESR) meas urements on polycrystalline samples, as well as band-structure calculations. The triclinic crystal structure of this compound features CuO$_4$ plaquette units connected into a two-dimensional framework through anions of the pyromellitic acid [C$_6$H$_2$(COO)$_4$]$^{4-}$. The ethylamine cations [C$_2$H$_5$NH$_3]^+$ are located between the layers and act as spacers. Magnetic susceptibility and heat capacity measurements establish a quasi-two-dimensional, weakly anisotropic and non-frustrated spin-$frac12$ square lattice with the ratio of the couplings $J_a/J_csimeq 0.7$ along the $a$ and $c$ directions, respectively. No clear signatures of the long-range magnetic order are seen in thermodynamic measurements down to 1.8,K. However, the gradual broadening of the ESR line suggests that magnetic ordering occurs at lower temperatures. Leading magnetic couplings are mediated by the organic anion of the pyromellitic acid and exhibit a non-trivial dependence on the Cu--Cu distance, with the stronger coupling between those Cu atoms that are further apart.
Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective.
Strain induced band gap deformations of hydrogenated/fluorinated graphene and hexagonal BN sheet have been investigated using first principles density functional calculations. Within harmonic approximation, the deformation is found to be higher for h ydrogenated systems than for the fluorinated systems. Interestingly, our calculated band gap deformation for hydrogenated/fluorinated graphene and BN sheets are positive, while those for pristine graphene and BN sheet are found to be negative. This is due to the strong overlap between nearest neighbor {pi} orbitals in the pristine sheets, that is absent in the passivated systems. We also estimate the intrinsic strength of these materials under harmonic uniaxial strain, and find that the in-plane stiffness of fluorinated and hydrogenated graphene are close, but larger in magnitude as compared to those of fluorinated and hydrogenated BN sheet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا