ترغب بنشر مسار تعليمي؟ اضغط هنا

We have performed Raman scattering investigations on the high energy magnetic excitations in a BiFeO$_3$ single crystal as a function of both temperature and laser excitation energy. A strong feature observed at 1250 cm$^{-1}$ in the Raman spectra ha s been previously assigned to two phonon overtone. We show here that its unusual frequency shift with the excitation energy and its asymmetric temperature dependent Fano lineshape reveal a strong coupling to magnetic excitations. In the same energy range, we have also identified the two-magnon excitation with a temperature dependence very similar to $alpha$-Fe$_2$O$_3$ hematite.
Bismuth ferrite, BiFeO3, is the only known room-temperature multiferroic material. We demonstrate here, using neutron scattering measurements in high quality single crystals, that the antiferromagnetic and ferroelectric orders are intimately coupled. Initially in a single ferroelectric state, our crystals have a canted antiferromagnetic structure describing a unique cycloid. Under electrical poling, polarisation re-orientation induces a spin flop. We argue here that the coupling between the two orders may be stronger in the bulk than that observed in thin films where the cycloid is absent.
Micro-Raman spectroscopy has been used to study lattice dynamics associated with the ferroelectric domains of a BiFeO$_3$ single crystal at low temperature. The phonon assignment shows a large frequency splitting between the transverse and longitudin al components of the A$_1$ phonon mode related to the Bi-O bonds in contrast with thin films where the splitting is negligible. Applying an external electric field induces frequency shifts of the low energy modes related to the Bi-O bonds. These softenings are due to a tensile stress via the piezoelectric effect. We give estimates of the phonon deformation potentials.
We discuss the first infrared reflectivity measurement on a BiFeO3 single crystal between 5 K and room temperature. The 9 predicted ab-plane E phonon modes are fully and unambiguously determined. The frequencies of the 4 A1 c-axis phonons are found. These results settle issues between theory and data on ceramics. Our findings show that the softening of the lowest frequency E mode is responsible for the temperature dependence of the dielectric constant, indicating that the ferroelectric transition in BiFeO3 is soft-mode driven.
Electric polarization loops are measured at room temperature on highly pure BiFeO3 single crystals synthesized by a flux growth method. Because the crystals have a high electrical resistivity, the resulting low leakage currents allow us to measure a large spontaneous polarization reaching 100 microC.cm^{-2}, a value never reported in the bulk. During electric cycling, the slow degradation of the material leads to an evolution of the hysteresis curves eventually preventing full saturation of the crystals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا