ترغب بنشر مسار تعليمي؟ اضغط هنا

40 - S. Komossa , D. Grupe , R. Saxton 2015
Swift has initiated a new era of understanding the extremes of active galactic nuclei (AGN) variability, their drivers and underlying physics. This is based on its rapid response, high sensitivity, good spatial resolution, and its ability to collect simultaneously X--ray-to-optical SEDs. Here, we present results from our recent monitoring campaigns with Swift of highly variable AGN, including outbursts, deep low states, and unusual long-term trends in several Seyfert galaxies including Mrk 335, WPVS007, and RXJ2314.9+2243. We also report detection of a new X-ray and optical outburst of IC 3599 and our Swift follow-ups. IC 3599 was previously known as one of the AGN with the highest-amplitude outbursts. We briefly discuss implications of this second outburst of IC 3599 for emission scenarios including accretion-disk variability, repeat tidal disruption events, and the presence of a binary supermassive black hole.
After the All-Sky Automated Survey for SuperNovae (ASAS-SN) discovered a significant brightening of the inner region of NGC 2617, we began a ~70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) waveleng ths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such changing look Active Galactic Nuclei (AGN) are rare and provide us with important insights about AGN physics. Based on the Hbeta line width and the radius-luminosity relation, we estimate the mass of central black hole to be (4 +/- 1) x 10^7 M_sun. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a black hole of the estimated mass that is illuminated by the observed, variable X-ray fluxes.
256 - L. C. Gallo 2010
In March 2009 the well-studied quasar, PG 0844+349, was discovered with Swift to be in an X-ray weak state. A follow-up XMM-Newton observation several weeks later generated a good quality spectrum of the source, showing substantial curvature and spec tral hardening. In combination with archival data at two previous epochs when the source was in a bright state, we examine the long-term spectral and timing properties of PG 0844+349 spanning nearly ten years and a factor of ten in brightness. Partial covering and blurred reflection models are compared to the data at each flux state while attempting to maintain consistency between the various epochs. In terms of the blurred reflection model, PG 0844+349 is in a reflection dominated state during the 2009 X-ray weak observations, which can be understood in terms of light bending. Moreover, the light bending scenario can also account for the short-term (i.e. ~1000s) spectral variability in the source. Other models cannot be decisively ruled out, but we note distinguishing features of the models that can be explored for in higher signal-to-noise data from current and future observatories.
PKS 0558-504 is the brightest radio-loud Narrow-Line Seyfert 1 galaxy at X-ray energies. Here we present results from the radio, optical, UV, and X-ray bands obtained with Swift, XMM, and ATCA during a 10-day monitoring campaign in September 2008. Th e simultaneous coverage at several wavelengths makes it possible to investigate in detail the broadband spectral energy distribution (SED) and the energetic of this source. The main results can be summarized as follows. The ATCA reveals the presence of an extended radio emission in PKS 0558-504 with two lobe-like structures at ~7 from the bright central source. The extended radio structure and the low value of the radio-loudness similar to radio-quiet Seyfert galaxies coupled with constraints from higher energy bands argue against a jet-dominated emission. The study of the SED, which is dominated by a nearly constant optical-UV emission, supports the conclusion that PKS 0558-504 is accreting at super-Eddington rate. This conclusion was reached assuming M_BH=2.5e8 M_sun, which was obtained with a new scaling method based on X-ray spectral variability results. A comparison between the accretion luminosity and the kinetic power associated with the jet suggests that in this source the accretion power dominates in agreement with the results obtained from Radiation-MHD simulations of Galactic black holes (GBHs) accreting at the Eddington rate. The combined findings from this panchromatic investigation strongly suggest that PKS 0558-504 is a large-scale analog of GBHs in their highly accreting intermediate state. Importantly, PKS 0558-504 may also be the prototype of the parent population of the very radio-loud NLS1s recently detected at gamma-ray energies.
75 - R. Bachev , D. Grupe , S. Boeva 2009
We present the results from a monitoring campaign of the Narrow-Line Seyfert~1 galaxy PG 1211+143. The object was monitored with ground-based facilities (UBVRI photometry; from February to July, 2007) and with Swift (X-ray photometry/spectroscopy and UV/Optical photometry; between March and May, 2007). We found PG 1211+143 in a historical low X-ray flux state at the beginning of the Swift monitoring campaign in March 2007. It is seen from the light curves that while violently variable in X-rays, the quasar shows little variations in optical/UV bands. The X-ray spectrum in the low state is similar to other Narrow-Line Seyfert 1 galaxies during their low-states and can be explained by a strong partial covering absorber or by X-ray reflection onto the disk. With the current data set, however, it is not possible to distinguish between both scenarios. The interband cross-correlation functions indicate a possible reprocessing of the X-rays into the longer wavelengths, consistent with the idea of a thin accretion disk, powering the quasar. The time lags between the X-ray and the optical/UV light curves, ranging from ~2 to ~18 days for the different wavebands, scale approximately as ~lambda^(4/3), but appear to be somewhat larger than expected for this object, taking into account its accretion disk parameters. Possible implications for the location of the X-ray irradiating source are discussed.
124 - T. G. Wang 2009
We present a detailed study of the X-ray and optical spectra of the luminous Seyfert galaxy Mrk 1393, which revealed variable partial obscuration of the active nucleus. The X-ray spectra obtained by XMM-Newton and Swift show moderate absorption with a column density around 3x10^21 cm^-2, consistent with a dust-reddening interpretation of the steep Balmer decrement seen in recent optical spectra. The X-ray flux in the 0.5 to 2 keV band during the XMM-Newton observation in 2005 and Swift observation in 2006 was a factor 6 brighter than that of the ROSAT All Sky Survey in 1991. In the past 4 years, the broad Halpha line brightened by a factor of 4 accompanied by a decrease in the Balmer decrement. A comparison with literature spectra reveals variations in the dust extinction on time scales of several years, suggesting that the obscuring material is very close to the active nucleus. These observations indicate that a dust-to-gas ratio as high as the Galactic value can be present in moderately thick gas in the vicinity of the central engine within a few parsecs. We suggest that the obscuring material may be debris disrupted from the dusty torus.
We report the discovery by the Robotic Optical Transient Experiment (ROTSE-IIIb) telescope of SN 2008es, an overluminous supernova (SN) at z=0.205 with a peak visual magnitude of -22.2. We present multiwavelength follow-up observations with the Swift satellite and several ground-based optical telescopes. The ROTSE-IIIb observations constrain the time of explosion to be 23+/-1 rest-frame days before maximum. The linear decay of the optical light curve, and the combination of a symmetric, broad Halpha emission line profile with broad P Cygni Hbeta and Na I lambda5892 profiles, are properties reminiscent of the bright Type II-L SNe 1979C and 1980K, although SN 2008es is greater than 10 times more luminous. The host galaxy is undetected in pre-supernova Sloan Digital Sky Survey images, and similar to Type II-L SN 2005ap (the most luminous SN ever observed), the host is most likely a dwarf galaxy with M_r > -17. Swift Ultraviolet/Optical Telescope observations in combination with Palomar photometry measure the SED of the SN from 200 to 800 nm to be a blackbody that cools from a temperature of 14,000 K at the time of the optical peak to 6400 K 65 days later. The inferred blackbody radius is in good agreement with the radius expected for the expansion speed measured from the broad lines (10,000 km/s). The bolometric luminosity at the optical peak is 2.8 x 10^44 erg/s, with a total energy radiated over the next 65 days of 5.6 x 10^50 erg. We favor a model in which the exceptional peak luminosity is a consequence of the core-collapse explosion of a progenitor star with a low-mass extended hydrogen envelope and a stellar wind with a density close to the upper limit on the mass-loss rate measured from the lack of an X-ray detection by the Swift X-Ray Telescope. (Abridged).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا