ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of the Ultra-Bright Type II-L Supernova 2008es

42   0   0.0 ( 0 )
 نشر من قبل Suvi Gezari
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery by the Robotic Optical Transient Experiment (ROTSE-IIIb) telescope of SN 2008es, an overluminous supernova (SN) at z=0.205 with a peak visual magnitude of -22.2. We present multiwavelength follow-up observations with the Swift satellite and several ground-based optical telescopes. The ROTSE-IIIb observations constrain the time of explosion to be 23+/-1 rest-frame days before maximum. The linear decay of the optical light curve, and the combination of a symmetric, broad Halpha emission line profile with broad P Cygni Hbeta and Na I lambda5892 profiles, are properties reminiscent of the bright Type II-L SNe 1979C and 1980K, although SN 2008es is greater than 10 times more luminous. The host galaxy is undetected in pre-supernova Sloan Digital Sky Survey images, and similar to Type II-L SN 2005ap (the most luminous SN ever observed), the host is most likely a dwarf galaxy with M_r > -17. Swift Ultraviolet/Optical Telescope observations in combination with Palomar photometry measure the SED of the SN from 200 to 800 nm to be a blackbody that cools from a temperature of 14,000 K at the time of the optical peak to 6400 K 65 days later. The inferred blackbody radius is in good agreement with the radius expected for the expansion speed measured from the broad lines (10,000 km/s). The bolometric luminosity at the optical peak is 2.8 x 10^44 erg/s, with a total energy radiated over the next 65 days of 5.6 x 10^50 erg. We favor a model in which the exceptional peak luminosity is a consequence of the core-collapse explosion of a progenitor star with a low-mass extended hydrogen envelope and a stellar wind with a density close to the upper limit on the mass-loss rate measured from the lack of an X-ray detection by the Swift X-Ray Telescope. (Abridged).

قيم البحث

اقرأ أيضاً

We report on our early photometric and spectroscopic observations of the extremely luminous Type II supernova (SN) 2008es. With an observed peak optical magnitude of m_V = 17.8 and at a redshift z = 0.213, SN 2008es had a peak absolute magnitude of M _V = -22.3, making it the second most luminous SN ever observed. The photometric evolution of SN 2008es exhibits a fast decline rate (~0.042 mag d^-1), similar to the extremely luminous Type II-L SN 2005ap. We show that SN 2008es spectroscopically resembles the luminous Type II-L SN 1979C. Although the spectra of SN 2008es lack the narrow and intermediate-width line emission typically associated with the interaction of a SN with the circumstellar medium of its progenitor star, we argue that the extreme luminosity of SN 2008es is powered via strong interaction with a dense, optically thick circumstellar medium. The integrated bolometric luminosity of SN 2008es yields a total radiated energy at ultraviolet and optical wavelengths of >10^51 ergs. Finally, we examine the apparently anomalous rate at which the Texas Supernova Search has discovered rare kinds of supernovae, including the five most luminous supernovae observed to date, and find that their results are consistent with those of other modern SN searches.
We present photometric and spectroscopic observations of ASASSN-13co, an unusually luminous Type II supernova and the first core-collapse supernova discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). First detection of the supernova was on UT 2013 August 29 and the data presented span roughly 3.5 months after discovery. We use the recently developed model from Pejcha & Prieto (2015) to model the multi-band light curves of ASASSN-13co and derive the bolometric luminosity curve. We compare ASASSN-13co to other Type II supernovae to show that it was unusually luminous for a Type II supernova and that it exhibited an atypical light curve shape that does not cleanly match that of either a standard Type II-L or Type II-P supernova.
This manuscript presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright ($m_Vleq17$), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalog, we also present redshifts and near-UV through IR magnitudes for all supernova host galaxies in both samples. Combined with our previous catalog, this work comprises a complete catalog of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is the second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.
What are Type II-Linear supernovae (SNe II-L)? This class, which has been ill defined for decades, now receives significant attention -- both theoretically, in order to understand what happens to stars in the ~15-25Mo range, and observationally, with two independent studies suggesting that they cannot be cleanly separated photometrically from the regular hydrogen-rich SNe II-P characterised by a marked plateau in their light curve. Here, we analyze the multi-band light curves and extensive spectroscopic coverage of a sample of 35 SNe II and find that 11 of them could be SNe II-L. The spectra of these SNe are hydrogen deficient, typically have shallow Halpha absorption, may show indirect signs of helium via strong OI 7774 absorption, and have faster line velocities consistent with a thin hydrogen shell. The light curves can be mostly differentiated from those of the regular, hydrogen-rich SNe II-P by their steeper decline rates and higher luminosity, and we propose as a defining photometric characteristic the decline in the V band: SNe II-L seem to decline by more than 0.5 mag from peak brightness by day 50 after explosion. Using our sample we provide template light curves for SNe II-L and II-P in 4 photometric bands.
We present high-cadence, comprehensive data on the nearby ($Dsimeq33,rm{Mpc}$) Type II SN 2017ahn, discovered within $sim$1 day of explosion, from the very early phases after explosion to the nebular phase. The observables of SN 2017ahn show a signif icant evolution over the $simeq470,rm{d}$ of our follow-up campaign, first showing prominent, narrow Balmer lines and other high-ionization features purely in emission (i.e. flash spectroscopy features), which progressively fade and lead to a spectroscopic evolution similar to that of more canonical Type II supernovae. Over the same period, the decline of the light curves in all bands is fast, resembling the photometric evolution of linearly declining H-rich core-collapse supernovae. The modeling of the light curves and early flash spectra suggest a complex circumstellar medium surrounding the progenitor star at the time of explosion, with a first dense shell produced during the very late stages of its evolution being swept up by the rapidly expanding ejecta within the first $sim6,rm{d}$ of the supernova evolution, while signatures of interaction are observed also at later phases. Hydrodynamical models support the scenario in which linearly declining Type II supernovae are predicted to arise from massive yellow super/hyper giants depleted of most of their hydrogen layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا