ترغب بنشر مسار تعليمي؟ اضغط هنا

Seyfert galaxies with Swift: giant flares, rapid drops, and other surprises

41   0   0.0 ( 0 )
 نشر من قبل S. Komossa
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Swift has initiated a new era of understanding the extremes of active galactic nuclei (AGN) variability, their drivers and underlying physics. This is based on its rapid response, high sensitivity, good spatial resolution, and its ability to collect simultaneously X--ray-to-optical SEDs. Here, we present results from our recent monitoring campaigns with Swift of highly variable AGN, including outbursts, deep low states, and unusual long-term trends in several Seyfert galaxies including Mrk 335, WPVS007, and RXJ2314.9+2243. We also report detection of a new X-ray and optical outburst of IC 3599 and our Swift follow-ups. IC 3599 was previously known as one of the AGN with the highest-amplitude outbursts. We briefly discuss implications of this second outburst of IC 3599 for emission scenarios including accretion-disk variability, repeat tidal disruption events, and the presence of a binary supermassive black hole.

قيم البحث

اقرأ أيضاً

We report the analysis of all Swift observations available up to 2019 April of $gamma$-ray-emitting narrow-line Seyfert 1 galaxies (NLSy1). The distribution of X-ray luminosities (and fluxes) indicates that the jet radiation significantly contributes to their X-ray emission, with Doppler boosting making values higher than other radio-loud NLSy1. The 0.3-10 keV photon indices are on average harder with respect to radio-quiet and radio-loud NLSy1, confirming a dominant jet contribution in X-rays. However, the lower variability amplitude with respect to blazars and the softening of the spectrum in some periods suggests that also the corona radiation contributes to the X-ray emission. In optical and ultraviolet (UV) significant flux changes have been observed on daily, weekly, and monthly time-scale, providing a clear indication of the significant contribution of the jet radiation in this part of spectrum. A strong correlation between X-ray, UV, and optical emission and simultaneous flux variations have been observed in 1H 0323+342, SBS 0846+513, PMN J0948+0022 as expected in case the jet radiation is the dominant mechanism. Correlated multiband variability favours the jet-dominated scenario also in FBQS J1644+2619 and PKS 2004-447. The summed X-ray Telescope spectra of 1H 0323+342, SBS 0846+513, PMN J0948+0022, and FBQS J1644+2619 are well fitted by a broken power law with a break around 2 keV. The spectrum above 2 keV is dominated by the non-thermal emission from a beamed relativistic jet, as suggested by the hard photon index. A Seyfert-like feature like the soft X-ray excess has been observed below 2 keV, making these $gamma$-ray-emitting NLSy1 different from typical blazars.
We present 15-GHz follow-up radio observations of eleven Swift gamma-ray burst (GRB) sources, obtained with the Arcminute Microkelvin Imager Large Array (AMI-LA). The initial follow-up observation for each source was made in a fully automated fashion ; as a result four observations were initiated within five minutes of the GRB alert timestamp. These observations provide the first millijansky-level constraints on prolonged radio emission from GRBs within the first hour post-burst. While no radio emission within the first six hours after the GRB is detected in this preliminary analysis, radio afterglow is detected from one of the GRBs (GRB120326A) on a timescale of days. The observations were made as part of an ongoing programme to use AMI-LA as a systematic follow-up tool for transients at radio frequencies. In addition to the preliminary results, we explain how we have created an easily extensible automated follow-up system, describing new software tools developed for astronomical transient alert distribution, automatic requesting of target-of-opportunity observations, and robotic control of the observatory.
80 - Riddhi Mehta , Maxim Barkov , 2021
We develop a model for the radio afterglow of the giant flare of SGR 1806-20 arising due to the interaction of magnetically-dominated cloud, an analogue of Solar Coronal Mass Ejections (CMEs), with the interstellar medium (ISM). The CME is modeled as a spheromak-like configuration. The CME is first advected with the magnetars wind and later interacts with the ISM, creating a strong forward shock and complicated backwards exhaust flow. Using three-dimensional magnetohydrodynamic simulations, we study various relative configurations of the magnetic field of the CME with respect to the ISMs magnetic field. We show that the dynamics of the forward shock mostly follows the Sedov-Taylor blastwave, while the internal structure of the shocked medium is considerably modified by the back flow, creating a multiple shock configuration. We calculate synthetic synchrotron emissivity maps and light curves using two assumptions: (i) magnetic field compression; (ii) amplification of the magnetic field at the shock.We find that models with magnetic field amplification account better for the observed radio emission.
Blazars are the most extreme subclass of active galactic nuclei with relativistic jets emerging from a super-massive black hole and forming a small angle with respect to our line of sight. Blazars are also known to be related to flaring activity as t hey exhibit large flux variations over a wide range of frequency and on multiple timescales, ranging from a few minutes to several months. The detection of a high-energy neutrino from the flaring blazar TXS 0506+056 and the subsequent discovery of a neutrino excess from the same direction have naturally strengthened the hypothesis that blazars are cosmic neutrino sources. While neutrino production during gamma-ray flares has been widely discussed, the neutrino yield of X-ray flares has received less attention. Motivated by a theoretical scenario where high energy neutrinos are produced by energetic protons interacting with their own X-ray synchrotron radiation, we make neutrino predictions over a sample of a sample of X-ray blazars. This sample consists of all blazars observed with the X-ray Telescope (XRT) on board Swift more than 50 times from November 2004 to November 2020. The statistical identification of a flaring state is done using the Bayesian Block algorithm to the 1 keV XRT light curves of frequently observed blazars. We categorize flaring states into classes based on their variation from the time-average value of the data points. During each flaring state, we compute the expected muon plus anti-muon neutrino events as well as the total signal for each source using the point-source effective area of Icecube for different operational seasons. We find that the median of the total neutrino number (in logarithm) from flares with duration $<30$ d is $mathcal{N}^{(rm tot)}_{ u_{mu}+bar{ u}_{mu}} sim 0.02$.
123 - S. Vaughan 2004
The rapid and seemingly random fluctuations in X-ray luminosity of Seyfert galaxies provided early support for the standard model in which Seyferts are powered by a supermassive black hole fed from an accretion disc. However, since EXOSAT there has b een little opportunity to advance our understanding of the most rapid X-ray variability. Observations with XMM-Newton have changed this. We discuss some recent results obtained from XMM-Newton observations of Seyfert 1 galaxies. Particular attention will be given to the remarkable similarity found between the timing properties of Seyferts and black hole X-ray binaries, including the power spectrum and the cross spectrum (time delays and coherence), and their implications for the physical processes at work in Seyferts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا