ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing a low pressure gas TPC for detecting Weakly Interacting Massive Particle (WIMP)-nucleon interactions. Optical readout with CCD cameras allows for the detection of the daily m odulation of the direction of the dark matter wind. In order to reach sensitivities required for WIMP detection, the detector needs to minimize backgrounds from electron recoils. This paper demonstrates that a simplified CCD analysis achieves $7.3times10^{-5}$ rejection of electron recoils while a charge analysis yields an electron rejection factor of $3.3times10^{-4}$ for events with $^{241}$Am-equivalent ionization energy loss between 40 keV and 200 keV. A combined charge and CCD analysis yields a background-limited upper limit of $1.1times10^{-5}$ (90% confidence level) for the rejection of $gamma$ and electron events. Backgrounds from alpha decays from the field cage are eliminated by introducing a veto electrode that surrounds the sensitive region in the TPC. CCD-specific backgrounds are reduced more than two orders of magnitude when requiring a coincidence with the charge readout.
We demonstrate practically approximation-free electrostatic calculations of micromesh detectors that can be extended to any other type of micropattern detectors. Using newly developed Boundary Element Method called Robin Hood Method we can easily han dle objects with huge number of boundary elements (hundreds of thousands) without any compromise in numerical accuracy. In this paper we show how such calculations can be applied to Micromegas detectors by comparing electron transparencies and gains for four different types of meshes. We demonstrate inclusion of dielectric material by calculating the electric field around different types of dielectric spacers.
217 - D. Dujmic , P. Fisher , R. Lanza 2008
The known direction of motion of dark matter particles relative to the Earth may be a key for their unambiguous identification even in the presence of backgrounds. We describe a prototype detector that is able to reconstruct direction vectors of weak ly interacting massive particles that may the dominant constituent of the dark matter in our galaxy. The detector uses a low-density gas (CF4) in a 10liter time-projection chamber with mesh-based electrodes and optical and charge readout. Initial results confirm good performance in the reconstruction of direction angle and sense (head-tail) for low-momentum nuclear recoils.
68 - G. Sciolla , S. Ahlen , D. Dujmic 2008
Directional detection can provide unambiguous observation of Dark Matter interactions even in presence of insidious backgrounds. The DM-TPC collaboration is developing a detector with the goal of measuring the direction and sense of nuclear recoils p roduced in Dark Matter interactions. The detector consists of a Time Projection Chamber with optical readout filled with CF$_4$ gas at low pressure. A collision between a WIMP and a gas molecule results in a nuclear recoil of 1-2 mm. The measurement of the energy loss along the recoil allows us to determine the sense and the direction of the recoil. Results from a prototype detector operated in a low-energy neutron beam clearly demonstrate the suitability of this approach to measure directionality. A cubic meter prototype, which is now being designed, will allow us to set competitive limits on spin-dependent Dark Matter interactions using a directional detector.
370 - G. Sciolla , S. Ahlen , D. Dujmic 2008
Directional detection can provide unambiguous observation of Dark Matter interactions even in presence of insidious backgrounds. The DM-TPC collaboration is developing a detector with the goal of measuring the direction and sense of nuclear recoils p roduced in Dark Matter interactions. The detector consists of a Time Projection Chamber with optical readout filled with CF$_4$ gas at low pressure. A collision between a WIMP and a gas molecule results in a nuclear recoil of 1-2 mm. The measurement of the energy loss along the recoil allows us to determine the sense and the direction of the recoil. Results from a prototype detector operated in a low-energy neutron beam clearly demonstrate the suitability of this approach to measure directionality. A full-scale module with an active volume of about one cubic meter is now being designed. This detector, which will be operated underground in 2009, will allow us to set competitive limits on spin-dependent Dark Matter interactions using a directional detector.
118 - D. Dujmic , S. Ahlen , P. Fisher 2008
We present new results with a prototype detector that is being developed by the DMTPC collaboration for the measurement of the direction tag (head-tail) of dark matter wind. We use neutrons from a Cf-252 source to create low-momentum nuclear recoils in elastic scattering with the residual gas nuclei. The recoil track is imaged in low-pressure time-projection chamber with optical readout. We measure the ionization rate along the recoil trajectory, which allows us to determine the direction tag of the incoming neutrons.
Directional detection of dark matter can provide unambiguous observation of dark matter interactions even in the presence of background. This article presents an experimental method to measure the direction tag (head-tail) of the dark matter wind by detecting the scintillation light created by the elastic nuclear recoils in the scattering of dark matter particles with the detector material. The technique is demonstrated by tagging the direction of the nuclear recoils created in the scattering of low-energy neutrons with CF4 in a low-pressure time-projection chamber that is developed by the DMTPC collaboration. The measurement of the decreasing ionization rate along the recoil trajectory provides the direction tag of the incoming neutrons, and proves that the head-tail effect can be observed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا