ﻻ يوجد ملخص باللغة العربية
Directional detection can provide unambiguous observation of Dark Matter interactions even in presence of insidious backgrounds. The DM-TPC collaboration is developing a detector with the goal of measuring the direction and sense of nuclear recoils produced in Dark Matter interactions. The detector consists of a Time Projection Chamber with optical readout filled with CF$_4$ gas at low pressure. A collision between a WIMP and a gas molecule results in a nuclear recoil of 1-2 mm. The measurement of the energy loss along the recoil allows us to determine the sense and the direction of the recoil. Results from a prototype detector operated in a low-energy neutron beam clearly demonstrate the suitability of this approach to measure directionality. A cubic meter prototype, which is now being designed, will allow us to set competitive limits on spin-dependent Dark Matter interactions using a directional detector.
Directional detection can provide unambiguous observation of Dark Matter interactions even in presence of insidious backgrounds. The DM-TPC collaboration is developing a detector with the goal of measuring the direction and sense of nuclear recoils p
Particles weakly interacting with ordinary matter, with an associated mass of the order of an atomic nucleus (WIMPs), are plausible candidates for Dark Matter. The direct detection of an elastic collision of a target nuclei induced by one of these WI
The dark matter directional detection opens a new field in cosmology bringing the possibility to build a map of nuclear recoils that would be able to explore the galactic dark matter halo giving access to a particle characterization of such matter an
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from background. However, this strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of track
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from background. However, this strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of track