ترغب بنشر مسار تعليمي؟ اضغط هنا

The equation of state for a degenerate gas of fermions at zero temperature in the non relativistic case is a polytrope, i.e. $p=gamma rho^{5/3}/m_F^{8/3}$. If dark matter is modelled by such non interacting fermion, this dependence in the mass of the fermion $m_F$ explains why if dark matter is very heavy the effective pressure of dark matter is negligible. Nevertheless, if the mass of the dark matter is very small, the effective pressure can be very large, and thus, a system of self-gravitating fermions can be formed. In this work we model the dark matter halo of the Milky-Way by solving the Tolman-Oppenheimer-Volkoff equations, with the equation of state for a partially degenerate ultralight non interacting fermion. It is found that in order to fit its rotational velocity curve of the Milky Way, the mass of the fermion should be in the range $29 ~mbox{eV} < m_F < 33~$eV. Moreover, the central density is constrained to be in the range of $46 < rho_0<61$ GeV/cm$^3$. The fermionic dark matter halo has a very different profile as compared with the standard Navarro-Frenk-White profile, thus, the possible indirect signals for annihilating dark matter may change by orders of magnitude. We found bounds for the annihilation cross section in this case by using the Saggitarius A* spectral energy distribution. Those limits are very strong confirming the idea that the lighter the dark matter particle is, the darkest it becomes.
Massive neutrinos can have helicity $s_{parallel} eq -1$. Neutrino helicity changes when the neutrino interacts with an external magnetic field and it is possible that the left-handed neutrinos born inside the Sun or a supernova could leave their sou rces with a different helicity. Since Dirac and Majorana neutrinos have different cross sections in the scattering on electrons for different neutrino helicities, a change in the final neutrino helicity may generate a different number of events and spectra in terrestrial detectors when astrophysical neutrinos have travelled regions with strong magnetic fields. In this work, we show that looking for these effects in solar neutrinos, it could be possible to set bounds in the neutrino properties such as the neutrino magnetic moment. Furthermore, for neutrinos coming from a supernova, we show that even in the case of an extremely small neutrino magnetic moment, $mu_ u sim 10^{-19}mu_B$, there will be measurable differences in both the number of events and in the spectra of Majorana and Dirac neutrinos.
It is well known that Majorana neutrinos have a pure axial neutral current interaction while Dirac neutrinos have the standard vector-axial interaction. In spite of this crucial difference, usually Dirac neutrino processes differ from Majorana proces ses by a term proportional to the neutrino mass, resulting in almost unmeasurable observations of this difference. In the present work we show that once the neutrino polarization evolution is considered, there are clear differences between Dirac and Majorana scattering on electrons. The change of polarization can be achieved in astrophysical environments with strong magnetic fields. Furthermore, we show that in the case of unpolarized neutrino scattering onto polarized electrons, this difference can be relevant even for large values of the neutrino energy.
If dark matter is mainly composed of axions, the density distribution can be nonuniformly distributed, being clumpy instead. By solving the Einstein-Klein-Gordon system of a scalar field with the potential energy density of an axionlike particle, we obtain the maximum mass of the self-gravitating system made of axions, called axion stars. The collision of axion stars with neutron stars may release the energy of axions due to the conversion of axions into photons in the presence of the neutron stars magnetic field. We estimate the energy release and show that it should be much less than previous estimates.Future data from femtolensing should strongly constrain this scenario.
In TeV scale B-L extension of the standard model with inverse seesaw, the Yukawa coupling of right-handed neutrinos can be of order one. This implies that the out of equilibrium condition for leptogenesis within standard cosmology is not satisfied. W e provide two scenarios for overcoming this problem and generating the desired value of the baryon asymmetry of the Universe. The first scenario is based on extra-dimensional braneworld effects that modify the Friedman equation. We show that in this case the value of the baryon asymmetry of the Universe constrains the five-dimensional Planck mass to be of order O(100) TeV. In the second scenario a non-thermal right-handed neutrino produced by the decay of inflaton is assumed. We emphasize that in this case, it is possible to generate the required baryon asymmetry of the Universe for TeV scale right-handed neutrinos.
We analyze the different parametrizations of a general four-zero texture mass matrices for quarks and leptons, that are able to reproduce the CKM and PMNS mixing matrices. This study is done through a Chi-Square analysis. In quark sector, only four s olutions are found to be compatible with CKM mixing matrix. In leptonic sector, using the last experimental results about the mixing angles in the neutrino sector, our Chi-Square analysis shows a preferred value for m_nu_3 to be around 0.05 eV independently of the parametrization of the four-zero texture mass matrices chosen for the charged leptons and neutrinos.
We consider B to PS decays where P stands for pseudoscalar and S for a heavy (~1500 MeV) scalar meson. We achieve agreement with available experimental data -- which includes a two orders of magnitude hierarchy -- assuming the scalars mesons are two quark states. The contribution of the dipolar penguin operator O_{11} is quantified.
We analyze the decays $B^0 to a^pm_0 pi^mp$ and $B^{-,0} to f_0 K^{-,0}$ and show that within the factorization approximation a phenomenological consistent picture can be obtained. We show that in this approach the $O_6$ operator provides the dominan t contributions to the suppressed channel $B^0 to a^+_0 pi^-$. When the $a_0$ is considered a two quark state, evaluation of the annihilation form factor using Perturbative $QCD$ implies that this contribution is not negligible, and furthermore it can interfere constructively or destructively with other penguin contributions. As a consequence of this ambiguity, the positive identification of $B^0 to pi^+ a_0^-$ can not distinguish between the two or four quark assignment of the $a_0$. According to our calculation, a best candidate to distinguish the nature of $a_0$ scalar is $Br(B^-to pi^0a_0^-)$ since the predictions for a four quark model is one order of magnitude smaller than for the two quark assignment. When the scalars are seen as two quarks states, simple theoretical assumptions based on SU(2) isospin symmetry provide relations between different B decays involving one scalar and one pseudoscalar meson.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا