ﻻ يوجد ملخص باللغة العربية
If dark matter is mainly composed of axions, the density distribution can be nonuniformly distributed, being clumpy instead. By solving the Einstein-Klein-Gordon system of a scalar field with the potential energy density of an axionlike particle, we obtain the maximum mass of the self-gravitating system made of axions, called axion stars. The collision of axion stars with neutron stars may release the energy of axions due to the conversion of axions into photons in the presence of the neutron stars magnetic field. We estimate the energy release and show that it should be much less than previous estimates.Future data from femtolensing should strongly constrain this scenario.
The next generation of axion direct detection experiments may rule out or confirm axions as the dominant source of dark matter. We develop a general likelihood-based framework for studying the time-series data at such experiments, with a focus on the
We argue that observations of old neutron stars can impose constraints on dark matter candidates even with very small elastic or inelastic cross section, and self-annihilation cross section. We find that old neutron stars close to the galactic center
We use cosmological observations in the post-Planck era to derive limits on thermally produced cosmological axions. In the early universe such axions contribute to the radiation density and later to the hot dark matter fraction. We find an upper limi
Axion-like particles are dark matter candidates motivated by the Peccei-Quinn mechanism and also occur in effective field theories where their masses and photon couplings are independent. We estimate the dispersion of circularly polarized photons in
We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnet