ترغب بنشر مسار تعليمي؟ اضغط هنا

Convolutional neural networks are able to perform a hierarchical learning process starting with local features. However, a limited attention is paid to enhancing such elementary level features like edges. We propose and evaluate two wavelet-based edg e feature enhancement methods to preprocess the input images to convolutional neural networks. The first method develops feature enhanced representations by decomposing the input images using wavelet transform and limited reconstructing subsequently. The second method develops such feature enhanced inputs to the network using local modulus maxima of wavelet coefficients. For each method, we have developed a new preprocessing layer by implementing each purposed method and have appended to the network architecture. Our empirical evaluations demonstrate that the proposed methods are outperforming the baselines and previously published work with significant accuracy gains.
Optimization for deep networks is currently a very active area of research. As neural networks become deeper, the ability in manually optimizing the network becomes harder. Mini-batch normalization, identification of effective respective fields, mome ntum updates, introduction of residual blocks, learning rate adoption, etc. have been proposed to speed up the rate of convergent in manual training process while keeping the higher accuracy level. However, the problem of finding optimal topological structure for a given problem is becoming a challenging task need to be addressed immediately. Few researchers have attempted to optimize the network structure using evolutionary computing approaches. Among them, few have successfully evolved networks with reinforcement learning and long-short-term memory. A very few has applied evolutionary programming into deep convolution neural networks. These attempts are mainly evolved the network structure and then subsequently optimized the hyper-parameters of the network. However, a mechanism to evolve the deep network structure under the techniques currently being practiced in manual process is still absent. Incorporation of such techniques into chromosomes level of evolutionary computing, certainly can take us to better topological deep structures. The paper concludes by identifying the gap between evolutionary based deep neural networks and deep neural networks. Further, it proposes some insights for optimizing deep neural networks using evolutionary computing techniques.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا