ﻻ يوجد ملخص باللغة العربية
Optimization for deep networks is currently a very active area of research. As neural networks become deeper, the ability in manually optimizing the network becomes harder. Mini-batch normalization, identification of effective respective fields, momentum updates, introduction of residual blocks, learning rate adoption, etc. have been proposed to speed up the rate of convergent in manual training process while keeping the higher accuracy level. However, the problem of finding optimal topological structure for a given problem is becoming a challenging task need to be addressed immediately. Few researchers have attempted to optimize the network structure using evolutionary computing approaches. Among them, few have successfully evolved networks with reinforcement learning and long-short-term memory. A very few has applied evolutionary programming into deep convolution neural networks. These attempts are mainly evolved the network structure and then subsequently optimized the hyper-parameters of the network. However, a mechanism to evolve the deep network structure under the techniques currently being practiced in manual process is still absent. Incorporation of such techniques into chromosomes level of evolutionary computing, certainly can take us to better topological deep structures. The paper concludes by identifying the gap between evolutionary based deep neural networks and deep neural networks. Further, it proposes some insights for optimizing deep neural networks using evolutionary computing techniques.
Due to the nonlinearity of artificial neural networks, designing topologies for deep convolutional neural networks (CNN) is a challenging task and often only heuristic approach, such as trial and error, can be applied. An evolutionary algorithm can s
Koopman operator theory, a powerful framework for discovering the underlying dynamics of nonlinear dynamical systems, was recently shown to be intimately connected with neural network training. In this work, we take the first steps in making use of t
Automated machine learning (AutoML) has seen a resurgence in interest with the boom of deep learning over the past decade. In particular, Neural Architecture Search (NAS) has seen significant attention throughout the AutoML research community, and ha
We introduce a convolutional recurrent neural network (CRNN) for music tagging. CRNNs take advantage of convolutional neural networks (CNNs) for local feature extraction and recurrent neural networks for temporal summarisation of the extracted featur
We create a novel optimisation technique inspired by natural ecosystems, where the optimisation works at two levels: a first optimisation, migration of genes which are distributed in a peer-to-peer network, operating continuously in time; this proces