ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore the ratio (C/M) of carbon-rich to oxygen-rich thermally pulsing asymptotic giant branch(TP-AGB) stars in the disk of M31 using a combination of moderate-resolution optical spectroscopy from the Spectroscopic Landscape of Andromedas Stellar Halo (SPLASH) survey and six-filter Hubble Space Telescope photometry from the Panchromatic Hubble Andromeda Treasury (PHAT) survey.Carbon stars were identified spectroscopically. Oxygen-rich M-stars were identifed using three different photometric definitions designed to mimic, and thus evaluate, selection techniques common in the literature. We calculate the C/M ratio as a function of galactocentric radius, present-day gas-phase oxygen abundance, stellar metallicity, age (via proxy defined as the ratio of TP-AGB stars to red giant branch, RGB, stars), and mean star formation rate over the last 400 Myr. We find statistically significant correlations between log(C/M) and all parameters. These trends are consistent across different M-star selection methods, though the fiducial values change. Of particular note is our observed relationship between log(C/M) and stellar metallicity, which is fully consistent with the trend seen across Local Group satellite galaxies. The fact that this trend persists in stellar populations with very different star formation histories indicates that the C/M ratio is governed by stellar properties alone.
Using G dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey, we have determined a vertical metallicity gradient over a large volume of the Milky Ways disk, and examined how this gradient varies for different [a/F e] subsamples. This sample contains over 40,000 stars with low-resolution spectroscopy over 144 lines of sight. We employ the SEGUE Stellar Parameter Pipeline (SSPP) to obtain estimates of effective temperature, surface gravity, [Fe/H], and [a/Fe] for each star and extract multiple volume-complete subsamples of approximately 1000 stars each. Based on the surveys consistent target-selection algorithm, we adjust each subsample to determine an unbiased picture of the disk in [Fe/H] and [a/Fe]; consequently, each individual star represents the properties of many. The SEGUE sample allows us to constrain the vertical metallicity gradient for a large number of stars over a significant volume of the disk, between ~0.3 and 1.6 kpc from the Galactic plane, and examine the in situ structure, in contrast to previous analyses which are more limited in scope. This work does not pre-suppose a disk structure, whether composed of a single complex population or a distinct thin and thick disk component. The metallicity gradient is -0.243 +0.039 -0.053 dex/kpc for the sample as a whole, which we compare to various literature results. Each [a/Fe] subsample dominates at a different range of heights above the plane of the Galaxy, which is exhibited in the gradient found in the sample as a whole. Stars over a limited range in [a/Fe] show little change in median [Fe/H] with height. If we associate [a/Fe] with age, our consistent vertical metallicity gradients with [a/Fe] suggest that stars formed in different epochs exhibit comparable vertical structure, implying similar star-formation processes and evolution.
We present the metallicity distribution function (MDF) for 24,270 G and 16,847 K dwarfs at distances from 0.2 to 2.3 kpc from the Galactic plane, based on spectroscopy from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey . This stellar sample is significantly larger in both number and volume than previous spectroscopic analyses, which were limited to the solar vicinity, making it ideal for comparison with local volume-limited samples and Galactic models. For the first time, we have corrected the MDF for the various observational biases introduced by the SEGUE target selection strategy. The SEGUE sample is particularly notable for K dwarfs, which are too faint to examine spectroscopically far from the solar neighborhood. The MDF of both spectral types becomes more metal-poor with increasing |Z|, which reflects the transition from a sample with small [alpha/Fe] values at small heights to one with enhanced [alpha/Fe] above 1 kpc. Comparison of our SEGUE distributions to those of two different Milky Way models reveals that both are more metal-rich than our observed distributions at all heights above the plane. Our unbiased observations of G and K dwarfs provide valuable constraints over the |Z|-height range of the Milky Way disk for chemical and dynamical Galaxy evolution models, previously only calibrated to the solar neighborhood, with particular utility for thin- and thick-disk formation models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا