ترغب بنشر مسار تعليمي؟ اضغط هنا

A Spectroscopic and Photometric Exploration of the C/M Ratio in the Disk of M31

112   0   0.0 ( 0 )
 نشر من قبل Katherine Hamren
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the ratio (C/M) of carbon-rich to oxygen-rich thermally pulsing asymptotic giant branch(TP-AGB) stars in the disk of M31 using a combination of moderate-resolution optical spectroscopy from the Spectroscopic Landscape of Andromedas Stellar Halo (SPLASH) survey and six-filter Hubble Space Telescope photometry from the Panchromatic Hubble Andromeda Treasury (PHAT) survey.Carbon stars were identified spectroscopically. Oxygen-rich M-stars were identifed using three different photometric definitions designed to mimic, and thus evaluate, selection techniques common in the literature. We calculate the C/M ratio as a function of galactocentric radius, present-day gas-phase oxygen abundance, stellar metallicity, age (via proxy defined as the ratio of TP-AGB stars to red giant branch, RGB, stars), and mean star formation rate over the last 400 Myr. We find statistically significant correlations between log(C/M) and all parameters. These trends are consistent across different M-star selection methods, though the fiducial values change. Of particular note is our observed relationship between log(C/M) and stellar metallicity, which is fully consistent with the trend seen across Local Group satellite galaxies. The fact that this trend persists in stellar populations with very different star formation histories indicates that the C/M ratio is governed by stellar properties alone.

قيم البحث

اقرأ أيضاً

The X-ray source populations within galaxies are typically difficult to identify and classify from X-ray data alone. We are able to break through this barrier by combining deep new Chandra ACIS-I observations with extensive Hubble Space Telescope ima ging from the PHAT survey of the M31 disk. We detect 373 X-ray sources down to 0.35-8.0 keV flux of 10$^{-15}$ erg cm$^{-2}$ s$^{-1}$ over 0.4 square degrees, 170 of which are reported for the first time. We identify optical counterpart candidates for 188 of the 373 sources, after using the HST data to correct the absolute astrometry of our Chandra imaging to 0.1$$. While 58 of these 188 are associated with point sources potentially in M31, over half (107) of the counterpart candidates are extended background galaxies, 5 are star clusters, 12 are foreground stars, and 6 are supernova remnants. Sources with no clear counterpart candidate are most likely to be undetected background galaxies and low-mass X-ray binaries in M31. The 58 point sources that are not consistent with foreground stars are bright enough that they could be high mass stars in M31; however, all but 8 have optical colors inconsistent with single stars, suggesting that many could be background galaxies or binary counterparts. For point-like counterparts, we examine the star formation history of the surrounding stellar populations to look for a young component that could be associated with a high mass X-ray binary. For the 40 point-like counterpart candidates associated with young populations, we find that their age distribution has two peaks at 15-20 Myr and 40-50 Myr. If we only consider the 8 counterpart candidates with typical high-mass main sequence optical star colors, their age distribution peaks mimic those of the sample of 40. Finally, we find that intrinsic faintness, and not extinction, is the main limitation for finding further counterpart candidates.
Plancks data acquired during the first 15.4 months of observations towards both the disk and halo of the M31 galaxy are analyzed. We confirm the existence of a temperature asymmetry, previously detected by using the 7-year WMAP data, along the direct ion of the M31 rotation, therefore indicative of a Doppler-induced effect. The asymmetry extends up to about 10 degrees (about 130 kpc) from the M31 center. We also investigate the recent issue raised in Rubin and Loeb (2014) about the kinetic Sunyaev-Zeldovich effect from the diffuse hot gas in the Local Group, predicted to generate a hot spot of a few degrees size in the CMB maps in the direction of M31, where the free electron optical depth gets the maximum value. We also consider the issue whether in the opposite direction with respect to the M31 galaxy the same effect induces a minimum in temperature in the Plancks maps of the sky. We find that the Plancks data at 100 GHz show an effect even larger than that expected.
352 - V. Vansevicius 2009
We have carried out a survey of compact star clusters (apparent size <3 arcsec) in the southwest part of the M31 galaxy, based on the high-resolution Suprime-Cam images (17.5 arcmin x 28.5 arcmin), covering ~15% of the deprojected galaxy disk area. T he UBVRI photometry of 285 cluster candidates (V < 20.5 mag) was performed using frames of the Local Group Galaxies Survey. The final sample, containing 238 high probability star cluster candidates (typical half-light radius r_h ~ 1.5 pc), was selected by specifying a lower limit of r_h > 0.15 arcsec (>0.6 pc). We derived cluster parameters based on the photometric data and multiband images by employing simple stellar population models. The clusters have a wide range of ages from ~5 Myr (young objects associated with 24 um and/or Ha emission) to ~10 Gyr (globular cluster candidates), and possess mass in a range of 3.0 < log(m/M_sol) < 4.3 peaking at m ~ 4000 M_sol. Typical age of these intermediate-mass clusters is in the range of 30 Myr < t < 3 Gyr, with a prominent peak at ~70 Myr. These findings suggest a rich intermediate-mass star cluster population in M31, which appears to be scarce in the Milky Way galaxy.
We characterize the relaxation state of galaxy systems by providing an assessment of the reliability of the photometric and spectroscopic probe via the semi-analytic galaxy evolution model. We quantify the correlations between the dynamical age of simulated galaxy groups and popular proxies of halo relaxation in observation, which are mainly either spectroscopic or photometric. We find the photometric indicators demonstrate a stronger correlation with the dynamical relaxation of galaxy groups compared to the spectroscopic probes. We take advantage of the Anderson Darling statistic ($A^2$) and the velocity-segregation ($bar{Delta V}$) as our spectroscopic indicators, and use the luminosity gap ($Delta m_{12}$) and the luminosity de-centring ($D_{mathrm{off-set}}$) as photometric ones. Firstly, we find that a combination of $Delta m_{12}$ and $D_{mathrm{off-set}}$ evaluated by a bivariant relation ($mathrm{B} = 0.04 times Delta m_{12} - 0.11 times Log(D_{off-set}) + 0.28$), shows a good correlation with the dynamical age compared to all other indicators. Secondly, by using the observational X-ray surface brightness map, we show that the bivariant relation brings about some acceptable correlations with X-ray proxies. These correlations are as well as the correlations between $A^2$ and X-ray proxies, offering reliable yet fast and economical method of quantifying the relaxation of galaxy systems. This study demonstrates that using photometric data to determine the relaxation status of a group will lead to some promising results that are comparable with the more expensive spectroscopic counterpart.
We measured [Fe/H] and [$alpha$/Fe] using spectral synthesis of low-resolution stellar spectroscopy for 70 individual red giant branch stars across four fields spanning the outer disk, Giant Stellar Stream (GSS), and inner halo of M31. Fields at M31- centric projected distances of 23 kpc in the halo, 12 kpc in the halo, 22 kpc in the GSS, and 26 kpc in the outer disk are $alpha$-enhanced, with $langle$[$alpha$/Fe]$rangle$ = 0.43, 0.50, 0.41, and 0.58, respectively. The 23 kpc and 12 kpc halo fields are relatively metal-poor, with $langle$[Fe/H]$rangle$ = $-$1.54 and $-$1.30, whereas the 22 kpc GSS and 26 kpc outer disk fields are relatively metal-rich with $langle$[Fe/H]$rangle$ = $-$0.84 and $-$0.92, respectively. For fields with substructure, we separated the stellar populations into kinematically hot stellar halo components and kinematically cold components. We did not find any evidence of an [$alpha$/Fe] gradient along the high surface brightness core of the GSS between $sim$17$-$22 kpc. However, we found tentative suggestions of a negative [$alpha$/Fe] gradient in the stellar halo, which may indicate that different progenitor(s) or formation mechanisms contributed to the build up of the inner versus outer halo. Additionally, the [$alpha$/Fe] distribution of the metal-rich ([Fe/H] $>$ $-$1.5), smooth inner stellar halo (r$_{rm{proj}}$ $lesssim$ 26 kpc) is inconsistent with having formed from the disruption of progenitor(s) similar to present-day M31 satellite galaxies. The 26 kpc outer disk is most likely associated with the extended disk of M31, where its high $alpha$-enhancement provides support for an episode of rapid star formation in M31s disk, possibly induced by a major merger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا