ترغب بنشر مسار تعليمي؟ اضغط هنا

Transmission eigenchannels and associated eigenvalues, that give a full account of wave propagation in random media, have recently emerged as a major theme in theoretical and applied optics. Here we demonstrate, both analytically and numerically, tha t in quasi one-dimensional ($1$D) diffusive samples, their behavior is governed mostly by the asymmetry in the reflections of the sample edges rather than by the absolute values of the reflection coefficients themselves. We show that there exists a threshold value of the asymmetry parameter, below which high transmission eigenchannels exist, giving rise to a singularity in the distribution of the transmission eigenvalues, $rho({cal T}rightarrow 1)sim(1-{cal T})^{-frac{1}{2}}$. At the threshold, $rho({cal T})$ exhibits critical statistics with a distinct singularity $sim(1-{cal T})^{-frac{1}{3}}$; above it the high transmission eigenchannels disappear and $rho({cal T})$ vanishes for ${cal T}$ exceeding a maximal transmission eigenvalue. We show that such statistical behavior of the transmission eigenvalues can be explained in terms of effective cavities (resonators), analogous to those in which the states are trapped in $1$D strong Anderson localization. In particular, the $rho ( mathcal{T}) $-transition can be mapped onto the shuffling of the resonator with perfect transmittance from the sample center to the edge with stronger reflection. We also find a similar transition in the distribution of resonant transmittances in $1$D layered samples. These results reveal a physical connection between high transmission eigenchannels in diffusive systems and $1$D strong Anderson localization. They open up a fresh opportunity for practically useful application: controlling the transparency of opaque media by tuning their coupling to the environment.
99 - Yu Chen , Chushun Tian 2014
The integer quantum Hall effect (IQHE) and chaos are commonly conceived as being unrelated. Contrary to common wisdoms, we find in a canonical chaotic system, the kicked spin-$1/2$ rotor, a Plancks quantum($h_e$)-driven phenomenon bearing a firm anal ogy to IQHE but of chaos origin. Specifically, the rotors energy growth is unbounded (metallic phase) for a discrete set of critical $h_e$-values, but otherwise bounded (insulating phase). The latter phase is topological in nature and characterized by a quantum number (quantized Hall conductance). The number jumps by unity whenever $h_e$ decreases passing through each critical value. Our findings, within the reach of cold-atom experiments, indicate that rich topological quantum phenomena may emerge from chaos.
164 - Jiao Wang , Chushun Tian , 2014
The quantum kicked rotor (QKR) driven by $d$ incommensurate frequencies realizes the universality class of $d$-dimensional disordered metals. For $d>3$, the system exhibits an Anderson metal-insulator transition which has been observed within the fra mework of an atom optics realization. However, the absence of genuine randomness in the QKR reflects in critical phenomena beyond those of the Anderson universality class. Specifically, the system shows strong sensitivity to the algebraic properties of its effective Planck constant $tilde h equiv 4pi /q$. For integer $q$, the system may be in a globally integrable state, in a `super-metallic configuration characterized by diverging response coefficients, Anderson localized, metallic, or exhibit transitions between these phases. We present numerical data for different $q$-values and effective dimensionalities, with the focus being on parameter configurations which may be accessible to experimental investigations.
35 - Chushun Tian 2012
We develop a non-perturbative theory to study large-scale quantum dynamics of Dirac particles in disordered scalar potentials (the so-called topological metal). For general disorder strength and carrier doping, we find that at large times, superdiffu sion occurs. I.e., the mean squared displacement grows as $sim tln t$. In the static limit, our analytical theory shows that the conductance of a finite-size system obeys the scaling equation identical to that found in previous numerical studies. These results suggest that in the topological metal, there exist some transparent channels -- where waves propagate freely -- dominating long-time transport of the system. We discuss the ensuing consequence -- the transverse superdiffusion in photonic materials -- that might be within the current experimental reach.
In the $t-J$ model, the electron fractionalization is unique due to the non-perturbative phase string effect. We formulated a lattice field theory taking this effect into full account. Basing on this field theory, we introduced a pair of Wilson loops which constitute a complete set of order parameters determining the phase diagram in the underdoped regime. We also established a general composition rule for electric transport expressing the electric conductivity in terms of the spinon and the holon conductivities. The general theory is applied to studies of the quantum phase diagram. We found that the antiferromagnetic and the superconducting phases are dual: in the former, holons are confined while spinons are deconfined, and {it vice versa} in the latter. These two phases are separated by a novel phase, the so-called Bose-insulating phase, where both holons and spinons are deconfined and the system is electrically insulating.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا