ﻻ يوجد ملخص باللغة العربية
In the $t-J$ model, the electron fractionalization is unique due to the non-perturbative phase string effect. We formulated a lattice field theory taking this effect into full account. Basing on this field theory, we introduced a pair of Wilson loops which constitute a complete set of order parameters determining the phase diagram in the underdoped regime. We also established a general composition rule for electric transport expressing the electric conductivity in terms of the spinon and the holon conductivities. The general theory is applied to studies of the quantum phase diagram. We found that the antiferromagnetic and the superconducting phases are dual: in the former, holons are confined while spinons are deconfined, and {it vice versa} in the latter. These two phases are separated by a novel phase, the so-called Bose-insulating phase, where both holons and spinons are deconfined and the system is electrically insulating.
Drude weight of optical conductivity is calculated at zero temperature by exact diagonalization for the two-dimensional t-J model with the two-particle term, $W$. For the ordinary t-J model with $W$=0, the scaling of the Drude weight $D propto delta^
The confluence of quantum mechanics and complexity, which leads to the emergence of rich, exotic states of matter, motivates the extension of our concepts of quantum ordering. The twin concepts of spontaneously broken symmetry, described in terms of
We present a systematic study of the phase diagram of the $t{-}t^prime{-}J$ model by using the Greens function Monte Carlo (GFMC) technique, implemented within the fixed-node (FN) approximation and a wave function that contains both antiferromagnetic
We present numeric results for ground state and angle resolved photoemission spectra (ARPES) for single hole in t-J model coupled to optical phonons. The systematic-error free diagrammatic Monte Carlo is employed where the Feynman graphs for the Mats
Determination of the parameter regime in which two holes in the t-J model form a bound state represents a long standing open problem in the field of strongly correlated systems. By applying and systematically improving the exact diagonalization metho