ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper considers a class of constrained convex stochastic composite optimization problems whose objective function is given by the summation of a differentiable convex component, together with a nonsmooth but convex component. The nonsmooth compo nent has an explicit max structure that may not easy to compute its proximal mapping. In order to solve these problems, we propose a mini-batch stochastic Nesterovs smoothing (MSNS) method. Convergence and the optimal iteration complexity of the method are established. Numerical results are provided to illustrate the efficiency of the proposed MSNS method for a support vector machine (SVM) model.
Mapping is one of the essential steps by which fermionic systems can be solved by quantum computers. In this letter, we give a unified framework of transformations mapping fermionic systems to qubit systems. Many existed transformations, such as Jord an-Wigner, Bravyi-Kitaev and Parity transformations, are the special cases of this framework. Furthermore, based on our framework, one can design transformations flexibly according to the structure of Hamiltonian and quantum devices. Particularly, we propose a transformation, Multilayer Segmented Parity (MSP) transformation, in which the number of layers and the length of segments are adjustable. Applying these mappings on the electronic structure Hamiltonian of various molecules, MSP transformation performs better on the number of Pauli operators and gates needed in the circuit to implement the evolution operator of Hamiltonian.
Quantum computing, an innovative computing system carrying prominent processing rate, is meant to be the solutions to problems in many fields. Among these realms, the most intuitive application is to help chemical researchers correctly de-scribe stro ng correlation and complex systems, which are the great challenge in current chemistry simulation. In this paper, we will present a standalone quantum simulation tool for chemistry, ChemiQ, which is designed to assist people carry out chemical research or molecular calculation on real or virtual quantum computers. Under the idea of modular programming in C++ language, the software is designed as a full-stack tool without third-party physics or chemistry application packages. It provides services as follow: visually construct molecular structure, quickly simulate ground-state energy, scan molecular potential energy curve by distance or angle, study chemical reaction, and return calculation results graphically after analysis.
In prescriptive analytics, the decision-maker observes historical samples of $(X, Y)$, where $Y$ is the uncertain problem parameter and $X$ is the concurrent covariate, without knowing the joint distribution. Given an additional covariate observation $x$, the goal is to choose a decision $z$ conditional on this observation to minimize the cost $mathbb{E}[c(z,Y)|X=x]$. This paper proposes a new distributionally robust approach under Wasserstein ambiguity sets, in which the nominal distribution of $Y|X=x$ is constructed based on the Nadaraya-Watson kernel estimator concerning the historical data. We show that the nominal distribution converges to the actual conditional distribution under the Wasserstein distance. We establish the out-of-sample guarantees and the computational tractability of the framework. Through synthetic and empirical experiments about the newsvendor problem and portfolio optimization, we demonstrate the strong performance and practical value of the proposed framework.
In this work, we show that the same theoretical tools that successfully explain other hydrides systems under pressure seem to be at odds with the recently claimed conventional room temperature superconductivity of the carbonaceous sulfur hydride. We support our conclusions with I) the absence of a dominant low-enthalpy stoichiometry and crystal structure in the ternary phase diagram. II) Only the thermodynamics of C-doping phases appears to be marginally competing in enthalpy against H$_3$S. III) Accurate results of the transition temperature given by ab initio Migdal-Eliashberg calculations differ by more than 110 K to recently theoretical claims explaining the high-temperature superconductivity in carbonaceous-hydrogen sulfide. A novel mechanism of superconductivity or a breakdown of current theories in this system is possibly behind the disagreement.
In this paper, we obtain some sufficient conditions for the D-completion of a T0 space to be the well-filterification of this space, the well-filterification of a T0 space to be the sobrification of this space and the D-completion of a T0 space to be the sobrification, respectively. Moreover, we give an example to show that a tapered closed set may be neither the closure of a directed set nor the closed KF-set, respectively. Because the tapered closed set is a closed WD-set, the example also gives a negative answer to a problem proposed by Xu. Meantime, a new direct characterization of the D-completion of a T0 space is given by using the notion of pre-c-compact elements.
Colorectal polyps are abnormal tissues growing on the intima of the colon or rectum with a high risk of developing into colorectal cancer, the third leading cause of cancer death worldwide. Early detection and removal of colon polyps via colonoscopy have proved to be an effective approach to prevent colorectal cancer. Recently, various CNN-based computer-aided systems have been developed to help physicians detect polyps. However, these systems do not perform well in real-world colonoscopy operations due to the significant difference between images in a real colonoscopy and those in the public datasets. Unlike the well-chosen clear images with obvious polyps in the public datasets, images from a colonoscopy are often blurry and contain various artifacts such as fluid, debris, bubbles, reflection, specularity, contrast, saturation, and medical instruments, with a wide variety of polyps of different sizes, shapes, and textures. All these factors pose a significant challenge to effective polyp detection in a colonoscopy. To this end, we collect a private dataset that contains 7,313 images from 224 complete colonoscopy procedures. This dataset represents realistic operation scenarios and thus can be used to better train the models and evaluate a systems performance in practice. We propose an integrated system architecture to address the unique challenges for polyp detection. Extensive experiments results show that our system can effectively detect polyps in a colonoscopy with excellent performance in real time.
Deep learning has brought great progress for the sequential recommendation (SR) tasks. With advanced network architectures, sequential recommender models can be stacked with many hidden layers, e.g., up to 100 layers on real-world recommendation data sets. Training such a deep network is difficult because it can be computationally very expensive and takes much longer time, especially in situations where there are tens of billions of user-item interactions. To deal with such a challenge, we present StackRec, a simple, yet very effective and efficient training framework for deep SR models by iterative layer stacking. Specifically, we first offer an important insight that hidden layers/blocks in a well-trained deep SR model have very similar distributions. Enlightened by this, we propose the stacking operation on the pre-trained layers/blocks to transfer knowledge from a shallower model to a deep model, then we perform iterative stacking so as to yield a much deeper but easier-to-train SR model. We validate the performance of StackRec by instantiating it with four state-of-the-art SR models in three practical scenarios with real-world datasets. Extensive experiments show that StackRec achieves not only comparable performance, but also substantial acceleration in training time, compared to SR models that are trained from scratch. Codes are available at https://github.com/wangjiachun0426/StackRec.
We propose a neural talking-head video synthesis model and demonstrate its application to video conferencing. Our model learns to synthesize a talking-head video using a source image containing the target persons appearance and a driving video that d ictates the motion in the output. Our motion is encoded based on a novel keypoint representation, where the identity-specific and motion-related information is decomposed unsupervisedly. Extensive experimental validation shows that our model outperforms competing methods on benchmark datasets. Moreover, our compact keypoint representation enables a video conferencing system that achieves the same visual quality as the commercial H.264 standard while only using one-tenth of the bandwidth. Besides, we show our keypoint representation allows the user to rotate the head during synthesis, which is useful for simulating face-to-face video conferencing experiences.
The game of darts has enjoyed great growth over the past decade with the perception of darts moving from that of a pub game to a game that is regularly scheduled on prime-time television in many countries including the U.K., Germany, the Netherlands and Australia among others. In this paper we analyze a novel data-set on sixteen of the top professional darts players in the world during the 2019 season. We use this data-set to fit skill-models to the players and use the fitted models to understand the variation in skills across these players. We then formulate and solve the dynamic zero-sum-games (ZSGs) that darts players face and to the best of our knowledge we are the first to do so. Using the fitted skill models and our ZSG problem formulation we quantify the importance of playing strategically in darts. We are also able to analyze interesting specific game situations including some real-world situations that have been the subject of some debate among darts fans and experts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا