ترغب بنشر مسار تعليمي؟ اضغط هنا

Colorectal Polyp Detection in Real-world Scenario: Design and Experiment Study

67   0   0.0 ( 0 )
 نشر من قبل Xinzi Sun
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Colorectal polyps are abnormal tissues growing on the intima of the colon or rectum with a high risk of developing into colorectal cancer, the third leading cause of cancer death worldwide. Early detection and removal of colon polyps via colonoscopy have proved to be an effective approach to prevent colorectal cancer. Recently, various CNN-based computer-aided systems have been developed to help physicians detect polyps. However, these systems do not perform well in real-world colonoscopy operations due to the significant difference between images in a real colonoscopy and those in the public datasets. Unlike the well-chosen clear images with obvious polyps in the public datasets, images from a colonoscopy are often blurry and contain various artifacts such as fluid, debris, bubbles, reflection, specularity, contrast, saturation, and medical instruments, with a wide variety of polyps of different sizes, shapes, and textures. All these factors pose a significant challenge to effective polyp detection in a colonoscopy. To this end, we collect a private dataset that contains 7,313 images from 224 complete colonoscopy procedures. This dataset represents realistic operation scenarios and thus can be used to better train the models and evaluate a systems performance in practice. We propose an integrated system architecture to address the unique challenges for polyp detection. Extensive experiments results show that our system can effectively detect polyps in a colonoscopy with excellent performance in real time.



قيم البحث

اقرأ أيضاً

Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis sys tems based on advanced machine learning algorithms are touted as a game-changer that can identify regions in the colon overlooked by the physicians during endoscopic examinations, and help detect and characterize lesions. In previous work, we have proposed the ResUNet++ architecture and demonstrated that it produces more efficient results compared with its counterparts U-Net and ResUNet. In this paper, we demonstrate that further improvements to the overall prediction performance of the ResUNet++ architecture can be achieved by using conditional random field and test-time augmentation. We have performed extensive evaluations and validated the improvements using six publicly available datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video Database, and CVC-VideoClinicDB. Moreover, we compare our proposed architecture and resulting model with other State-of-the-art methods. To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation. The experimental results show that applying CRF and TTA improves the performance on various polyp segmentation datasets both on the same dataset and cross-dataset.
168 - Qin Wang , Hui Che , Weizhen Ding 2021
Differentiation of colorectal polyps is an important clinical examination. A computer-aided diagnosis system is required to assist accurate diagnosis from colonoscopy images. Most previous studies at-tempt to develop models for polyp differentiation using Narrow-Band Imaging (NBI) or other enhanced images. However, the wide range of these models applications for clinical work has been limited by the lagging of imaging techniques. Thus, we propose a novel framework based on a teacher-student architecture for the accurate colorectal polyp classification (CPC) through directly using white-light (WL) colonoscopy images in the examination. In practice, during training, the auxiliary NBI images are utilized to train a teacher network and guide the student network to acquire richer feature representation from WL images. The feature transfer is realized by domain alignment and contrastive learning. Eventually the final student network has the ability to extract aligned features from only WL images to facilitate the CPC task. Besides, we release the first public-available paired CPC dataset containing WL-NBI pairs for the alignment training. Quantitative and qualitative evaluation indicates that the proposed method outperforms the previous methods in CPC, improving the accuracy by 5.6%with very fast speed.
Online continual learning from data streams in dynamic environments is a critical direction in the computer vision field. However, realistic benchmarks and fundamental studies in this line are still missing. To bridge the gap, we present a new online continual object detection benchmark with an egocentric video dataset, Objects Around Krishna (OAK). OAK adopts the KrishnaCAM videos, an ego-centric video stream collected over nine months by a graduate student. OAK provides exhaustive bounding box annotations of 80 video snippets (~17.5 hours) for 105 object categories in outdoor scenes. The emergence of new object categories in our benchmark follows a pattern similar to what a single person might see in their day-to-day life. The dataset also captures the natural distribution shifts as the person travels to different places. These egocentric long-running videos provide a realistic playground for continual learning algorithms, especially in online embodied settings. We also introduce new evaluation metrics to evaluate the model performance and catastrophic forgetting and provide baseline studies for online continual object detection. We believe this benchmark will pose new exciting challenges for learning from non-stationary data in continual learning. The OAK dataset and the associated benchmark are released at https://oakdata.github.io/.
This paper reports methods and results in the DeeperForensics Challenge 2020 on real-world face forgery detection. The challenge employs the DeeperForensics-1.0 dataset, one of the most extensive publicly available real-world face forgery detection d atasets, with 60,000 videos constituted by a total of 17.6 million frames. The model evaluation is conducted online on a high-quality hidden test set with multiple sources and diverse distortions. A total of 115 participants registered for the competition, and 25 teams made valid submissions. We will summarize the winning solutions and present some discussions on potential research directions.
There has been a widely held view that visual representations (e.g., photographs and illustrations) do not depict negation, for example, one that can be expressed by a sentence the train is not coming. This view is empirically challenged by analyzing the real-world visual representations of comic (manga) illustrations. In the experiment using image captioning tasks, we gave people comic illustrations and asked them to explain what they could read from them. The collected data showed that some comic illustrations could depict negation without any aid of sequences (multiple panels) or conventional devices (special symbols). This type of comic illustrations was subjected to further experiments, classifying images into those containing negation and those not containing negation. While this image classification was easy for humans, it was difficult for data-driven machines, i.e., deep learning models (CNN), to achieve the same high performance. Given the findings, we argue that some comic illustrations evoke background knowledge and thus can depict negation with purely visual elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا