ﻻ يوجد ملخص باللغة العربية
We propose a neural talking-head video synthesis model and demonstrate its application to video conferencing. Our model learns to synthesize a talking-head video using a source image containing the target persons appearance and a driving video that dictates the motion in the output. Our motion is encoded based on a novel keypoint representation, where the identity-specific and motion-related information is decomposed unsupervisedly. Extensive experimental validation shows that our model outperforms competing methods on benchmark datasets. Moreover, our compact keypoint representation enables a video conferencing system that achieves the same visual quality as the commercial H.264 standard while only using one-tenth of the bandwidth. Besides, we show our keypoint representation allows the user to rotate the head during synthesis, which is useful for simulating face-to-face video conferencing experiences.
We propose a novel approach for few-shot talking-head synthesis. While recent works in neural talking heads have produced promising results, they can still produce images that do not preserve the identity of the subject in source images. We posit thi
We propose an audio-driven talking-head method to generate photo-realistic talking-head videos from a single reference image. In this work, we tackle two key challenges: (i) producing natural head motions that match speech prosody, and (ii) maintaini
Generating high-fidelity talking head video by fitting with the input audio sequence is a challenging problem that receives considerable attentions recently. In this paper, we address this problem with the aid of neural scene representation networks.
Editing talking-head video to change the speech content or to remove filler words is challenging. We propose a novel method to edit talking-head video based on its transcript to produce a realistic output video in which the dialogue of the speaker ha
We present a method, Neural Radiance Flow (NeRFlow),to learn a 4D spatial-temporal representation of a dynamic scene from a set of RGB images. Key to our approach is the use of a neural implicit representation that learns to capture the 3D occupancy,