ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we study the privacy-preserving task assignment in spatial crowdsourcing, where the locations of both workers and tasks, prior to their release to the server, are perturbed with Geo-Indistinguishability (a differential privacy notion f or location-based systems). Different from the previously studied online setting, where each task is assigned immediately upon arrival, we target the batch-based setting, where the server maximizes the number of successfully assigned tasks after a batch of tasks arrive. To achieve this goal, we propose the k-Switch solution, which first divides the workers into small groups based on the perturbed distance between workers/tasks, and then utilizes Homomorphic Encryption (HE) based secure computation to enhance the task assignment. Furthermore, we expedite HE-based computation by limiting the size of the small groups under k. Extensive experiments demonstrate that, in terms of the number of successfully assigned tasks, the k-Switch solution improves batch-based baselines by 5.9X and the existing online solution by 1.74X, with no privacy leak.
Federated learning (FL) for medical image segmentation becomes more challenging in multi-task settings where clients might have different categories of labels represented in their data. For example, one client might have patient data with healthy pan creases only while datasets from other clients may contain cases with pancreatic tumors. The vanilla federated averaging algorithm makes it possible to obtain more generalizable deep learning-based segmentation models representing the training data from multiple institutions without centralizing datasets. However, it might be sub-optimal for the aforementioned multi-task scenarios. In this paper, we investigate heterogeneous optimization methods that show improvements for the automated segmentation of pancreas and pancreatic tumors in abdominal CT images with FL settings.
In recent years, phishing scams have become the crime type with the largest money involved on Ethereum, the second-largest blockchain platform. Meanwhile, graph neural network (GNN) has shown promising performance in various node classification tasks . However, for Ethereum transaction data, which could be naturally abstracted to a real-world complex graph, the scarcity of labels and the huge volume of transaction data make it difficult to take advantage of GNN methods. Here in this paper, to address the two challenges, we propose a Self-supervised Incremental deep Graph learning model (SIEGE), for the phishing scam detection problem on Ethereum. In our model, two pretext tasks designed from spatial and temporal perspectives help us effectively learn useful node embedding from the huge amount of unlabelled transaction data. And the incremental paradigm allows us to efficiently handle large-scale transaction data and help the model maintain good performance when the data distribution is drastically changing. We collect transaction records about half a year from Ethereum and our extensive experiments show that our model consistently outperforms strong baselines in both transductive and inductive settings.
174 - Kunming Luo , Ao Luo , Chuan Wang 2021
We present an unsupervised optical flow estimation method by proposing an adaptive pyramid sampling in the deep pyramid network. Specifically, in the pyramid downsampling, we propose an Content Aware Pooling (CAP) module, which promotes local feature gathering by avoiding cross region pooling, so that the learned features become more representative. In the pyramid upsampling, we propose an Adaptive Flow Upsampling (AFU) module, where cross edge interpolation can be avoided, producing sharp motion boundaries. Equipped with these two modules, our method achieves the best performance for unsupervised optical flow estimation on multiple leading benchmarks, including MPI-SIntel, KITTI 2012 and KITTI 2015. Particuarlly, we achieve EPE=1.5 on KITTI 2012 and F1=9.67% KITTI 2015, which outperform the previous state-of-the-art methods by 16.7% and 13.1%, respectively.
In this paper, we introduce a new framework for unsupervised deep homography estimation. Our contributions are 3 folds. First, unlike previous methods that regress 4 offsets for a homography, we propose a homography flow representation, which can be estimated by a weighted sum of 8 pre-defined homography flow bases. Second, considering a homography contains 8 Degree-of-Freedoms (DOFs) that is much less than the rank of the network features, we propose a Low Rank Representation (LRR) block that reduces the feature rank, so that features corresponding to the dominant motions are retained while others are rejected. Last, we propose a Feature Identity Loss (FIL) to enforce the learned image feature warp-equivariant, meaning that the result should be identical if the order of warp operation and feature extraction is swapped. With this constraint, the unsupervised optimization is achieved more effectively and more stable features are learned. Extensive experiments are conducted to demonstrate the effectiveness of all the newly proposed components, and results show that our approach outperforms the state-of-the-art on the homography benchmark datasets both qualitatively and quantitatively. Code is available at https://github.com/megvii-research/BasesHomo.
The paper proposes a method to effectively fuse multi-exposure inputs and generates high-quality high dynamic range (HDR) images with unpaired datasets. Deep learning-based HDR image generation methods rely heavily on paired datasets. The ground trut h provides information for the network getting HDR images without ghosting. Datasets without ground truth are hard to apply to train deep neural networks. Recently, Generative Adversarial Networks (GAN) have demonstrated their potentials of translating images from source domain X to target domain Y in the absence of paired examples. In this paper, we propose a GAN-based network for solving such problems while generating enjoyable HDR results, named UPHDR-GAN. The proposed method relaxes the constraint of paired dataset and learns the mapping from LDR domain to HDR domain. Although the pair data are missing, UPHDR-GAN can properly handle the ghosting artifacts caused by moving objects or misalignments with the help of modified GAN loss, improved discriminator network and useful initialization phase. The proposed method preserves the details of important regions and improves the total image perceptual quality. Qualitative and quantitative comparisons against other methods demonstrated the superiority of our method.
We present an unsupervised learning approach for optical flow estimation by improving the upsampling and learning of pyramid network. We design a self-guided upsample module to tackle the interpolation blur problem caused by bilinear upsampling betwe en pyramid levels. Moreover, we propose a pyramid distillation loss to add supervision for intermediate levels via distilling the finest flow as pseudo labels. By integrating these two components together, our method achieves the best performance for unsupervised optical flow learning on multiple leading benchmarks, including MPI-SIntel, KITTI 2012 and KITTI 2015. In particular, we achieve EPE=1.4 on KITTI 2012 and F1=9.38% on KITTI 2015, which outperform the previous state-of-the-art methods by 22.2% and 15.7%, respectively.
The performance of deep learning-based methods strongly relies on the number of datasets used for training. Many efforts have been made to increase the data in the medical image analysis field. However, unlike photography images, it is hard to genera te centralized databases to collect medical images because of numerous technical, legal, and privacy issues. In this work, we study the use of federated learning between two institutions in a real-world setting to collaboratively train a model without sharing the raw data across national boundaries. We quantitatively compare the segmentation models obtained with federated learning and local training alone. Our experimental results show that federated learning models have higher generalizability than standalone training.
Occlusion is an inevitable and critical problem in unsupervised optical flow learning. Existing methods either treat occlusions equally as non-occluded regions or simply remove them to avoid incorrectness. However, the occlusion regions can provide e ffective information for optical flow learning. In this paper, we present OccInpFlow, an occlusion-inpainting framework to make full use of occlusion regions. Specifically, a new appearance-flow network is proposed to inpaint occluded flows based on the image content. Moreover, a boundary warp is proposed to deal with occlusions caused by displacement beyond image border. We conduct experiments on multiple leading flow benchmark data sets such as Flying Chairs, KITTI and MPI-Sintel, which demonstrate that the performance is significantly improved by our proposed occlusion handling framework.
With the emergence of quantum computing and quantum networks, many communication protocols that take advantage of the unique properties of quantum mechanics to achieve a secure bidirectional exchange of information, have been proposed. In this study, we propose a new quantum communication protocol, called Continuous Quantum Secure Dialogue (CQSD), that allows two parties to continuously exchange messages without halting while ensuring the privacy of the conversation. Compared to existing protocols, CQSD improves the efficiency of quantum communication. In addition, we offer an implementation of the CQSD protocol using the Qiskit framework. Finally, we conduct a security analysis of the CQSD protocol in the context of several common forms of attack.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا