ﻻ يوجد ملخص باللغة العربية
With the emergence of quantum computing and quantum networks, many communication protocols that take advantage of the unique properties of quantum mechanics to achieve a secure bidirectional exchange of information, have been proposed. In this study, we propose a new quantum communication protocol, called Continuous Quantum Secure Dialogue (CQSD), that allows two parties to continuously exchange messages without halting while ensuring the privacy of the conversation. Compared to existing protocols, CQSD improves the efficiency of quantum communication. In addition, we offer an implementation of the CQSD protocol using the Qiskit framework. Finally, we conduct a security analysis of the CQSD protocol in the context of several common forms of attack.
A single broadband squeezed field constitutes a quantum communication resource that is sufficient for the realization of a large number N of quantum channels based on distributed Einstein-Podolsky-Rosen (EPR) entangled states. Each channel can serve
Einstein-Podolsky-Rosen (EPR) steering is a form of bipartite quantum correlation that is intermediate between entanglement and Bell nonlocality. It allows for entanglement certification when the measurements performed by one of the parties are not c
Certification and quantification of correlations for multipartite states of quantum systems appear to be a central task in quantum information theory. We give here a unitary quantum-mechanical perspective of both entanglement and Einstein-Podolsky-Ro
The Einstein-Podolsky-Rosen (EPR) paradox plays a fundamental role in our understanding of quantum mechanics, and is associated with the possibility of predicting the results of non-commuting measurements with a precision that seems to violate the un
EPR steering is an asymmetric form of correlations which is intermediate between quantum entanglement and Bell nonlocality, and can be exploited for quantum communication with one untrusted party. In particular, steering of continuous variable Gaussi