ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-topological gauged soliton solutions called Q-balls arise in many scalar field theories that are invariant under a U(1) gauge symmetry. The related, but qualitatively distinct, Q-shell solitons have only been shown to exist for special potentials . We investigate gauged solitons in a generic sixth-order polynomial potential (that contains the leading effects of many effective field theories) and show that this potential generically allows for both Q-balls and Q-shells. We argue that Q-shell solutions occur in many, and perhaps all, potentials that have previously only been shown to contain Q-balls. We give simple analytic characterizations of these Q-shell solutions, leading to excellent predictions of their physical properties.
Theories with both electric and magnetic charges (mutually non-local theories) have several major obstacles to calculating scattering amplitudes. Even when the interaction arises through the kinetic mixing of two, otherwise independent, U(1)s, so tha t all low-energy interactions are perturbative, difficulties remain: using a self-dual, local formalism leads to spurious poles at any finite order in perturbation theory. Correct calculations must show how the spurious poles cancel in observable scattering amplitudes. Consistency requires that one type of charge is confined as a result of one of the U(1)s being broken. Here we show how the constraints of confinement and parity conservation on observable processes manages to cancel the spurious poles in scattering and pair production amplitudes, paving the way for systematic studies of the experimental signatures of dark electric-magnetic processes. Along the way we demonstrate some novel effects in electric-magnetic interactions, including that the amplitude for single photon production of magnetic particles by electric particles vanishes.
Recent anomalies in $^8$Be and $^4$He nuclear decays can be explained by postulating a fifth force mediated by a new boson $X$. The distributions of both transitions are consistent with the same $X$ mass, 17 MeV, providing kinematic evidence for a si ngle new particle explanation. In this work, we examine whether the new results also provide dynamical evidence for a new particle explanation, that is, whether the observed decay rates of both anomalies can be described by a single hypothesis for the $X$ bosons interactions. We consider the observed $^8$Be and $^4$He excited nuclei, as well as a $^{12}$C excited nucleus; together these span the possible $J^P$ quantum numbers up to spin 1. For each transition, we determine whether scalar, pseudoscalar, vector, or axial vector $X$ particles can mediate the decay, and we construct the leading operators in a nuclear physics effective field theory that describes them. Assuming parity conservation, the scalar case is excluded and the pseudoscalar case is highly disfavored. Remarkably, however, the protophobic vector gauge boson, first proposed to explain only the $^8$Be anomaly, also explains the $^4$He anomaly within experimental uncertainties. We predict signal rates for other closely related nuclear measurements, which, if confirmed, will provide overwhelming evidence that a fifth force has been discovered.
We investigate simple extensions of the Mirror Twin Higgs model in which the twin color gauge symmetry and the discrete $Z_2$ mirror symmetry are spontaneously broken. This is accomplished in a minimal way by introducing a single new colored triplet, sextet, or octet scalar field and its twin along with a suitable scalar potential. This spontaneous $Z_2$ breaking allows for a phenomenologically viable alignment of the electroweak vacuum, and leads to dramatic differences between the visible and mirror sectors with regard to the residual gauge symmetries at low energies, color confinement scales, and particle spectra. In particular, several of our models feature a remnant $SU(2)$ or $SO(3)$ twin color gauge symmetry with a very low confinement scale in comparison to $Lambda_{rm QCD}$. Furthermore, couplings between the colored scalar and matter provide a new dynamical source of twin fermion masses, and due to the mirror symmetry, these lead to a variety of correlated visible sector effects that can be probed through precision measurements and collider searches.
We outline a scenario where both the Higgs and a complex scalar dark matter candidate arise as the pseudo-Nambu-Goldstone bosons of breaking a global $SO(7)$ symmetry to $SO(6)$. The novelty of our construction is that the symmetry partners of the St andard Model top-quark are charged under a hidden color group and not the usual $SU(3)_c$. Consequently, the scale of spontaneous symmetry breaking and the masses of the top partners can be significantly lower than those with colored top partners. Taking these scales to be lower at once makes the model more natural and also reduces the induced non-derivative coupling between the Higgs and the dark matter. Indeed, natural realizations of this construction describe simple thermal WIMP dark matter which is stable under a global $U(1)_D$ symmetry. We show how the Large Hadron Collider along with current and next generation dark matter experiments will explore the most natural manifestations of this framework.
While the evidence for dark matter continues to grow, the nature of the dark matter remains a mystery. A dark $U(1)_D$ gauge theory can have a small kinetic mixing with the visible photon which provides a portal to the dark sector. Magnetic monopoles of the dark $U(1)_D$ can obtain small magnetic couplings to our photon through this kinetic mixing. This coupling is only manifest below the mass of the dark photon; at these scales the monopoles are bound together by tubes of dark magnetic flux. These flux tubes can produce phase shifts in Aharonov-Bohm type experiments. We outline how this scenario might be realized, examine the existing constraints, and quantify the experimental sensitivity required to detect magnetic dipole dark matter in this novel way.
The Twin Higgs scenario stabilizes the Higgs mass through an approximate global symmetry and has remained natural in the face of increasingly stringent LHC bounds on colored top partners. Two basic structural questions in this framework concern the n ature of the twin hypercharge gauge symmetry and the origin of the $mathbb{Z}_2$ symmetry breaking needed to achieve the correct vacuum alignment. Both questions are addressed in a simple extension of the Mirror Twin Higgs model with an exact $mathbb{Z}_2$ symmetry and a scalar field that spontaneously breaks both twin hypercharge and $mathbb{Z}_2$. Due to the $mathbb{Z}_2$ symmetry and an approximate $U(2)$ symmetry in the potential, a new hypercharge scalar appears in the visible sector and, like the Higgs, is a pseudo-Nambu-Goldstone boson with a weak-scale mass. Couplings between the hypercharge scalar and matter provide a new dynamical source of twin sector fermion masses. Depending on the nature and size of these couplings, a variety of experimental signatures may arise, including quark and lepton flavor violation, neutrino masses and mixings as well as direct collider probes of the hypercharged scalar. These signals are correlated with the twin matter spectrum, which can differ dramatically from the visible one, including dynamical realizations of fraternal-like scenarios.
We consider Fraternal Twin Higgs models where the twin bottom quark, $b$, is much heavier than the twin confinement scale. In this limit aspects of quark bound states, like the mass and binding energy, can be accurately calculated. We show that in th is regime, dark matter can be primarily made of twin baryons containing $b b b$ or, when twin hypercharge is gauged, twin atoms, composed of a baryon bound to a twin $tau$ lepton. We find that there are significant regions of parameter space which are allowed by current constraints but within the realm of detection in the near future. The case with twin atoms can alleviate the tension between dark matter properties inferred from dwarf galaxies and clusters.
The mirror twin Higgs framework allows for a natural Higgs mass while being consistent with collider bounds on colored symmetry partners to standard model quarks. This mechanism relies crucially on a discrete symmetry which relates each standard mode l field to a mirror partner. These partners are charged under gauge groups identical to, but distinct from, those in the standard model. The minimal twin Higgs scenario provides only one low-energy connection between the visible and twin sectors, the light Higgs boson. We present a new class of portals connecting the two sectors, using fields that have no twin partner under the discrete symmetry. Scalar, fermion, and vector states may provide such singleton portals, each with unique features and experimental signatures. The vector portal, in particular, provides a variety of renormalizable interactions relevant for the LHC. We provide concrete constructions of these portals and determine their phenomenology and opportunities to probe the twin sector at the LHC. We also sketch a scenario in which the structure of the twin sector itself can be tested.
Long ago Weinberg showed, from first principles, that the amplitude for a single photon exchange between an electric current and a magnetic current violates Lorentz invariance. The obvious conclusion at the time was that monopoles were not allowed in quantum field theory. Since the discovery of topological monopoles there has thus been a paradox. On the one hand, topological monopoles are constructed in Lorentz invariant quantum field theories, while on the other hand, the low-energy effective theory for such monopoles will reproduce Weinbergs result. We examine a toy model where both electric and magnetic charges are perturbatively coupled and show how soft-photon resummation for hard scattering exponentiates the Lorentz violating pieces to a phase that is the covariant form of the Aharonov-Bohm phase due to the Dirac string. The modulus of the scattering amplitudes (and hence observables) are Lorentz invariant, and when Dirac charge quantization is imposed the amplitude itself is also Lorentz invariant. For closed paths there is a topological component of the phase that relates to aspects of 4D topological quantum field theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا