ﻻ يوجد ملخص باللغة العربية
While the evidence for dark matter continues to grow, the nature of the dark matter remains a mystery. A dark $U(1)_D$ gauge theory can have a small kinetic mixing with the visible photon which provides a portal to the dark sector. Magnetic monopoles of the dark $U(1)_D$ can obtain small magnetic couplings to our photon through this kinetic mixing. This coupling is only manifest below the mass of the dark photon; at these scales the monopoles are bound together by tubes of dark magnetic flux. These flux tubes can produce phase shifts in Aharonov-Bohm type experiments. We outline how this scenario might be realized, examine the existing constraints, and quantify the experimental sensitivity required to detect magnetic dipole dark matter in this novel way.
We discuss the Aharonov-Bohm effect in the presence of hidden photons kinetically mixed with the ordinary electromagnetic photons. The hidden photon field causes a slight phase shift in the observable interference pattern. It is then shown how the li
We propose to search for light $U(1)$ dark photons, $A$, produced via kinetically mixing with ordinary photons via the Compton-like process, $gamma e^- rightarrow A e^-$, in a nuclear reactor and detected by their interactions with the material in th
We show that the Aharonov-Bohm effect finds a natural description in the setting of QFT on curved spacetimes in terms of superselection sectors of local observables. The extension of the analysis of superselection sectors from Minkowski spacetime to
The phase of the wave function of charged matter is sensitive to the value of the electric potential, even when the matter never enters any region with non-vanishing electromagnetic fields. Despite its fundamental character, this archetypal electric
The Aharonov-Bohm effect is the prime example of a zero-field-strength configuration where a non-trivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by