ﻻ يوجد ملخص باللغة العربية
The mirror twin Higgs framework allows for a natural Higgs mass while being consistent with collider bounds on colored symmetry partners to standard model quarks. This mechanism relies crucially on a discrete symmetry which relates each standard model field to a mirror partner. These partners are charged under gauge groups identical to, but distinct from, those in the standard model. The minimal twin Higgs scenario provides only one low-energy connection between the visible and twin sectors, the light Higgs boson. We present a new class of portals connecting the two sectors, using fields that have no twin partner under the discrete symmetry. Scalar, fermion, and vector states may provide such singleton portals, each with unique features and experimental signatures. The vector portal, in particular, provides a variety of renormalizable interactions relevant for the LHC. We provide concrete constructions of these portals and determine their phenomenology and opportunities to probe the twin sector at the LHC. We also sketch a scenario in which the structure of the twin sector itself can be tested.
Extensions of the Standard Model are often highly constrained by cosmology. The presence of new states can dramatically alter observed properties of the universe by the presence of additional matter or entropy. In particular, attempts too solve the h
The nature of dark matter is one of the open problems of the Standard Model of particle physics. Despite the great experimental efforts, we have not yet found a positive signal of its interactions with ordinary matter. One possible explanation would
Portal models that connect the Standard Model to a Dark Sector allow for a wide variety of scenarios beyond the simplest WIMP models. Kinetic mixing of gauge fields in particular has allowed a broad range of new ideas. However, the models that evade
The microscopic spectral density of the Wilson Dirac operator for two flavor lattice QCD is analyzed. The computation includes the leading order a^2 corrections of the chiral Lagrangian in the microscopic limit. The result is used to demonstrate how
In a model independent framework, the effects of new physics at the electroweak scale can be parametrized in terms of an effective Lagrangian expansion. Assuming the $SU(2)_L x U(1)_Y$ gauge symmetry is linearly realized, the expansion at the lowest