ترغب بنشر مسار تعليمي؟ اضغط هنا

The integration of complex oxides on silicon presents opportunities to extend and enhance silicon technology with novel electronic, magnetic, and photonic properties. Among these materials, barium titanate (BaTiO3) is a particularly strong ferroelect ric perovskite oxide with attractive dielectric and electro-optic properties. Here we demonstrate nanophotonic circuits incorporating ferroelectric BaTiO3 thin films on the ubiquitous silicon-on-insulator (SOI) platform. We grow epitaxial, single-crystalline BaTiO3 directly on SOI and engineer integrated waveguide structures that simultaneously confine light and an RF electric field in the BaTiO3 layer. Using on-chip photonic interferometers, we extract a large effective Pockels coefficient of 213 plus minus 49 pm/V, a value more than six times larger than found in commercial optical modulators based on lithium niobate. The monolithically integrated BaTiO3 optical modulators show modulation bandwidth in the gigahertz regime, which is promising for broadband applications.
Aluminum nitride has been shown to possess both strong Kerr nonlinearity and electro-optic Pockels effect. By combining these two effects, here we demonstrate on-chip reversible on/off switching of the optical frequency comb generated by an aluminum nitride microring resonator. We optimize the design of gating electrodes and the underneath resonator structure to effectively apply electric field without increasing the optical loss. The switching of the comb is monitored by measuring one of the frequency comb peaks while varying the electric field. The controlled comb electro-optic response is investigated for direct comparison with the transient thermal effect.
Aluminum nitride is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high quality factor aluminum nitride micro-ring resonators integrated on silicon substrates. By engin eering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, frequency combs are generated with a single wavelength continuous-wave pump laser. The Kerr coefficient (n2) of aluminum nitride is further extracted from our experimental results.
We present a monolithic integrated aluminum nitride (AlN) optomechanical resonator in which the mechanical motion is actuated by piezoelectric force and the displacement is transduced by a high-Q optical cavity. The AlN optomechanical resonator is ex cited from a radio-frequency electrode via a small air gap to eliminate resonator-to-electrode loss. We observe the electrically excited mechanical motion at 47.3 MHz, 1.04 GHz, and 3.12 GHz, corresponding to the 1st, 2nd, and 4th radial-contour mode of the wheel resonator respectively. An equivalent circuit model is developed to describe the observed Fano-like resonance spectrum.
Aluminum nitride (AlN) has been widely used in microeletromechanical resonators for its excellent electromechanical properties. Here we demonstrate the use of AlN as an optomechanical material that simultaneously offer low optical and mechanical loss . Integrated AlN microring resonators in the shape of suspended rings exhibit high optical quality factor (Q) with loaded Q up to 125,000. Optomechanical transduction of the Brownian motion of a GHz contour mode yields a displacement sensitivity of 6.2times10^(-18)m/Hz^(1/2) in ambient air.
We demonstrate wheel-shaped silicon optomechanical resonators for resonant operation in ambient air. The high finesse of optical whispering gallery modes (loaded optical Q factor above 500,000) allows for efficient transduction of the wheel resonator s mechanical radial contour modes of frequency up to 1.35 GHz with high mechanical Q factor around 4,000 in air.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا