ﻻ يوجد ملخص باللغة العربية
We demonstrate wheel-shaped silicon optomechanical resonators for resonant operation in ambient air. The high finesse of optical whispering gallery modes (loaded optical Q factor above 500,000) allows for efficient transduction of the wheel resonators mechanical radial contour modes of frequency up to 1.35 GHz with high mechanical Q factor around 4,000 in air.
We report on miniature GaAs disk optomechanical resonators vibrating in air in the radiofrequency range. The flexural modes of the disks are studied by scanning electron microscopy and optical interferometry, and correctly modeled with the elasticity
We report on optomechanical GaAs disk resonators with ultrahigh quality factor - frequency product Qf. Disks standing on a simple pedestal exhibit GHz breathing modes attaining a Qf of 10^13 measured under vacuum at cryogenic temperature. Clamping lo
Achieving cavity-optomechanical strong coupling with high-frequency phonons provides a rich avenue for quantum technology development including quantum state-transfer, memory, and transduction, as well as enabling several fundamental studies of macro
We have observed the transversal vibration mode of suspended carbon nanotubes at millikelvin temperatures by measuring the single-electron tunneling current. The suspended nanotubes are actuated contact-free by the radio frequency electric field of a
Advancement of diamond based photonic circuitry requires robust fabrication protocols of key components, including diamond resonators and cavities. Here, we present 1D (nanobeam) photonic crystal cavities generated from single crystal diamond membran