ترغب بنشر مسار تعليمي؟ اضغط هنا

Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices

222   0   0.0 ( 0 )
 نشر من قبل Chi Xiong
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The integration of complex oxides on silicon presents opportunities to extend and enhance silicon technology with novel electronic, magnetic, and photonic properties. Among these materials, barium titanate (BaTiO3) is a particularly strong ferroelectric perovskite oxide with attractive dielectric and electro-optic properties. Here we demonstrate nanophotonic circuits incorporating ferroelectric BaTiO3 thin films on the ubiquitous silicon-on-insulator (SOI) platform. We grow epitaxial, single-crystalline BaTiO3 directly on SOI and engineer integrated waveguide structures that simultaneously confine light and an RF electric field in the BaTiO3 layer. Using on-chip photonic interferometers, we extract a large effective Pockels coefficient of 213 plus minus 49 pm/V, a value more than six times larger than found in commercial optical modulators based on lithium niobate. The monolithically integrated BaTiO3 optical modulators show modulation bandwidth in the gigahertz regime, which is promising for broadband applications.



قيم البحث

اقرأ أيضاً

We report on growth and ferroelectric (FE) properties of superlattices (SLs) composed of the FE BaTiO3 and the paraelectric (PE) CaTiO3. Previous theories have predicted that the polarization in (BaTiO3)n/(CaTiO3)n SLs increases as the sublayer thick ness (n) increases when the same strain state is maintained. However, our BaTiO3/CaTiO3 SLs show a varying lattice-strain state and systematic reduction in polarization with increasing n while coherently-strained SLs with n=1, 2 show a FE polarization of ca. 8.5 uC/cm^2. We suggest that the strain coupling plays more important role in FE properties than the electrostatic interlayer coupling based on constant dielectric permittivities.
Recent works suggest that the surface chemistry, in particular, the presence of oxygen vacancies can affect the polarization in a ferroelectric material. This should, in turn, influence the domain ordering driven by the need to screen the depolarizin g field. Here we show using density functional theory that the presence of oxygen vacancies at the surface of BaTiO3 (001) preferentially stabilizes an inward pointing, P-, polarization. Mirror electron microscopy measurements of the domain ordering confirm the theoretical results.
To develop a new generation of high-speed photonic modulators on silicon-technology-based photonics, new materials with large Pockels coefficients have been transferred to silicon substrates. Previous approaches focus on realizing stand-alone devices on dedicated silicon substrates, incompatible with the fabrication process in silicon foundries. In this work, we demonstrate monolithic integration of electro-optic modulators based on the Pockels effect in barium titanate (BTO) thin films into the back-end-of-line of a photonic integrated circuit (PIC) platform. Molecular wafer bonding allows fully PIC-compatible integration of BTO-based devices and is, as shown, scalable to 200 mm wafers. The PIC-integrated BTO Mach-Zehnder modulators outperform conventional Si photonic modulators in modulation efficiency, losses, and static tuning power. The devices show excellent V{pi}L (0.2 Vcm) and V{pi}L{alpha} (1.3 VdB), work at high speed (25 Gbps), and can be tuned at low static power consumption (100 nW). Our concept demonstrates the possibility of monolithic integration of Pockels-based electro-optic modulators in advanced silicon photonic platforms. {c} 2019 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved. https://www.osapublishing.org/jlt/abstract.cfm?URI=jlt-37-5-1456 Publication date: March 1, 2019 This work was supported in part by the European Union (EU) under Horizon 2020 grant agreements no. H2020-ICT-2015-25-688579 (PHRESCO) and H2020-ICT-2017-1-780997 (plaCMOS).
Residue number system (RNS) enables dimensionality reduction of an arithmetic problem by representing a large number as a set of smaller integers, where the number is decomposed by prime number factorization using the moduli as basic functions. These reduced problem sets can then be processed independently and in parallel, thus improving computational efficiency and speed. Here we show an optical RNS hardware representation based on integrated nanophotonics. The digit-wise shifting in RNS arithmetic is expressed as spatial routing of an optical signal in 2x2 hybrid photonic-plasmonic switches. Here the residue is represented by spatially shifting the input waveguides relative to the routers outputs, where the moduli are represented by the number of waveguides. By cascading the photonic 2x2 switches, we design a photonic RNS adder and a multiplier forming an all-to-all sparse directional network. The advantage of this photonic arithmetic processor is the short (10s ps) computational execution time given by the optical propagation delay through the integrated nanophotonic router. Furthermore, we show how photonic processing in-the-network leverages the natural parallelism of optics such as wavelength-division-multiplexing or optical angular momentum in this RNS processor. A key application for photonic RNS is the functional analysis convolution with widespread usage in numerical linear algebra, computer vision, language- image- and signal processing, and neural networks.
We report on quantification and elastic strain mapping in two artificial BaZrO3/BaTiO3 (BZ/BT) superlattices having periods of 6.6 nm and 11 nm respectively, grown on (001) SrTiO3 single crystal substrate by pulsed laser deposition technique. The met hodology consists of a combination of high-resolution scanning transmission electron microscopy and nanobeam electron diffraction associated with dedicated algorithm for diffraction patterns processing originally developed for semiconductors to record the strains at atomic scale. Both in-plane and out-of-plane elastic strains were then determined at 2 nm spatial resolution and their average values were used to map the strains along and transverse to the epitaxial growth direction of both samples to determine its variation along several BZ/BT interfaces. In addition, the variation of the width of the inter-diffusion BT/BZ interfaces and intermixing between different layers are estimated. The obtained width average value measured in these inter-diffusion interfaces vary from 8 to 12% and from 9 to 11% for both superlattices having period of 6.6 nm and 11 nm respectively. These inter-diffusion interfaces and the inherent elastic strains due to the confined layers of the superlattices are known to be the most important parameters, responsible of the change in their functional properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا