ترغب بنشر مسار تعليمي؟ اضغط هنا

141 - Chengfei Xie , Gennian Ge 2021
We study some sum-product problems over matrix rings. Firstly, for $A, B, Csubseteq M_n(mathbb{F}_q)$, we have $$ |A+BC|gtrsim q^{n^2}, $$ whenever $|A||B||C|gtrsim q^{3n^2-frac{n+1}{2}}$. Secondly, if a set $A$ in $M_n(mathbb{F}_q)$ satisfies $|A|ge q C(n)q^{n^2-1}$ for some sufficiently large $C(n)$, then we have $$ max{|A+A|, |AA|}gtrsim minleft{frac{|A|^2}{q^{n^2-frac{n+1}{4}}}, q^{n^2/3}|A|^{2/3}right}. $$ These improve the results due to The and Vinh (2020), and generalize the results due to Mohammadi, Pham, and Wang (2021). We also give a new proof for a recent result due to The and Vinh (2020). Our method is based on spectral graph theory and linear algebra.
ErdH{o}s posed the problem of finding conditions on a graph $G$ that imply the largest number of edges in a triangle-free subgraph is equal to the largest number of edges in a bipartite subgraph. We generalize this problem to general cases. Let $delt a_r$ be the least number so that any graph $G$ on $n$ vertices with minimum degree $delta_rn$ has the property $P_{r-1}(G)=K_rf(G),$ where $P_{r-1}(G)$ is the largest number of edges in an $(r-1)$-partite subgraph and $K_rf(G)$ is the largest number of edges in a $K_r$-free subgraph. We show that $frac{3r-4}{3r-1}<delta_rlefrac{4(3r-7)(r-1)+1}{4(r-2)(3r-4)}$ when $rge4.$ In particular, $delta_4le 0.9415.$
For a graph $H$ and a $k$-chromatic graph $F,$ if the Turan graph $T_{k-1}(n)$ has the maximum number of copies of $H$ among all $n$-vertex $F$-free graphs (for $n$ large enough), then $H$ is called $F$-Turan-good, or $k$-Turan-good for short if $F$ is $K_k.$ In this paper, we construct some new classes of $k$-Turan-good graphs and prove that $P_4$ and $P_5$ are $k$-Turan-good for $kge4.$
294 - Chengfei Xie , Gennian Ge 2020
A Nikodym set $mathcal{N}subseteq(mathbb{Z}/(Nmathbb{Z}))^n$ is a set containing $Lsetminus{x}$ for every $xin(mathbb{Z}/(Nmathbb{Z}))^n$, where $L$ is a line passing through $x$. We prove that if $N$ is square-free, then the size of every Nikodym se t is at least $c_nN^{n-o(1)}$, where $c_n$ only depends on $n$. This result is an extension of the result in the finite field case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا