ﻻ يوجد ملخص باللغة العربية
ErdH{o}s posed the problem of finding conditions on a graph $G$ that imply the largest number of edges in a triangle-free subgraph is equal to the largest number of edges in a bipartite subgraph. We generalize this problem to general cases. Let $delta_r$ be the least number so that any graph $G$ on $n$ vertices with minimum degree $delta_rn$ has the property $P_{r-1}(G)=K_rf(G),$ where $P_{r-1}(G)$ is the largest number of edges in an $(r-1)$-partite subgraph and $K_rf(G)$ is the largest number of edges in a $K_r$-free subgraph. We show that $frac{3r-4}{3r-1}<delta_rlefrac{4(3r-7)(r-1)+1}{4(r-2)(3r-4)}$ when $rge4.$ In particular, $delta_4le 0.9415.$
We prove that $s_r(K_k) = O(k^5 r^{5/2})$, where $s_r(K_k)$ is the Ramsey parameter introduced by Burr, ErdH{o}s and Lov{a}sz in 1976, which is defined as the smallest minimum degree of a graph $G$ such that any $r$-colouring of the edges of $G$ cont
A graph $G$ is said to be $q$-Ramsey for a $q$-tuple of graphs $(H_1,ldots,H_q)$, denoted by $Gto_q(H_1,ldots,H_q)$, if every $q$-edge-coloring of $G$ contains a monochromatic copy of $H_i$ in color $i,$ for some $iin[q]$. Let $s_q(H_1,ldots,H_q)$ de
Answering an open question from 2007, we construct infinite $k$-crossing-critical families of graphs that contain vertices of any prescribed odd degree, for any sufficiently large~$k$. To answer this question, we introduce several properties of infin
Given any graph $H$, a graph $G$ is said to be $q$-Ramsey for $H$ if every coloring of the edges of $G$ with $q$ colors yields a monochromatic subgraph isomorphic to $H$. Further, such a graph $G$ is said to be minimal $q$-Ramsey for $H$ if additiona
This paper is motivated by the following question: what are the unavoidable induced subgraphs of graphs with large treewidth? Aboulker et al. made a conjecture which answers this question in graphs of bounded maximum degree, asserting that for all $k