ترغب بنشر مسار تعليمي؟ اضغط هنا

127 - Zhiqiang Cao , Ran Liu , Chau Yuen 2021
Relative localization between autonomous robots without infrastructure is crucial to achieve their navigation, path planning, and formation in many applications, such as emergency response, where acquiring a prior knowledge of the environment is not possible. The traditional Ultra-WideBand (UWB)-based approach provides a good estimation of the distance between the robots, but obtaining the relative pose (including the displacement and orientation) remains challenging. We propose an approach to estimate the relative pose between a group of robots by equipping each robot with multiple UWB ranging nodes. We determine the pose between two robots by minimizing the residual error of the ranging measurements from all UWB nodes. To improve the localization accuracy, we propose to utilize the odometry constraints through a sliding window-based optimization. The optimized pose is then fused with the odometry in a particle filtering for pose tracking among a group of mobile robots. We have conducted extensive experiments to validate the effectiveness of the proposed approach.
108 - Xuelin Cao , Bo Yang , Chau Yuen 2021
Terrestrial communication networks have experienced significant development in recent years by providing emerging services for ground users. However, one critical challenge raised is to provide full coverage (especially in dense high-rise urban envir onments) for ground users due to scarce network resources and limited coverage. To meet this challenge, we propose a high altitude platform (HAP)-reserved ground-air-space (GAS) transmission scheme, which combines with the ground-to-space (G2S) transmission scheme to strengthen the terrestrial communication and save the transmission power. To integrate the two transmission schemes, we propose a transmission control strategy. Wherein, the ground user decides its transmission scheme, i.e., switches between the GAS link transmission and the G2S link transmission with a probability. We then maximize the overall throughput and derive the optimal probability that a ground user adopts the GAS transmission scheme. Numerical results demonstrate the superiority of the proposed transmission control strategy.
The future communication will be characterized by ubiquitous connectivity and security. These features will be essential requirements for the efficient functioning of the futuristic applications. In this paper, in order to highlight the impact of blo ckchain and 6G on the future communication systems, we categorize these application requirements into two broad groups. In the first category, called Requirement Group I mbox{(RG-I)}, we include the performance-related needs on data rates, latency, reliability and massive connectivity, while in the second category, called Requirement Group II mbox{(RG-II)}, we include the security-related needs on data integrity, non-repudiability, and auditability. With blockchain and 6G, the network decentralization and resource sharing would minimize resource under-utilization thereby facilitating RG-I targets. Furthermore, through appropriate selection of blockchain type and consensus algorithms, RG-II needs of 6G applications can also be readily addressed. Through this study, the combination of blockchain and 6G emerges as an elegant solution for secure and ubiquitous future communication.
60 - Ran Liu , Yongping He , Chau Yuen 2021
Environment mapping is an essential prerequisite for mobile robots to perform different tasks such as navigation and mission planning. With the availability of low-cost 2D LiDARs, there are increasing applications of such 2D LiDARs in industrial envi ronments. However, environment mapping in an unknown and feature-less environment with such low-cost 2D LiDARs remains a challenge. The challenge mainly originates from the short-range of LiDARs and complexities in performing scan matching in these environments. In order to resolve these shortcomings, we propose to fuse the ultra-wideband (UWB) with 2D LiDARs to improve the mapping quality of a mobile robot. The optimization-based approach is utilized for the fusion of UWB ranging information and odometry to first optimize the trajectory. Then the LiDAR-based loop closures are incorporated to improve the accuracy of the trajectory estimation. Finally, the optimized trajectory is combined with the LiDAR scans to produce the occupancy map of the environment. The performance of the proposed approach is evaluated in an indoor feature-less environment with a size of 20m*20m. Obtained results show that the mapping error of the proposed scheme is 85.5% less than that of the conventional GMapping algorithm with short-range LiDAR (for example Hokuyo URG-04LX in our experiment with a maximum range of 5.6m).
55 - Yan Qin , Wen-tai Li , Chau Yuen 2021
The sustaining evolution of sensing and advancement in communications technologies have revolutionized prognostics and health management for various electrical equipment towards data-driven ways. This revolution delivers a promising solution for the health monitoring problem of heat pump (HP) system, a vital device widely deployed in modern buildings for heating use, to timely evaluate its operation status to avoid unexpected downtime. Many HPs were practically manufactured and installed many years ago, resulting in fewer sensors available due to technology limitations and cost control at that time. It raises a dilemma to safeguard HPs at an affordable cost. We propose a hybrid scheme by integrating industrial Internet-of-Things (IIoT) and intelligent health monitoring algorithms to handle this challenge. To start with, an IIoT network is constructed to sense and store measurements. Specifically, temperature sensors are properly chosen and deployed at the inlet and outlet of the water tank to measure water temperature. Second, with temperature information, we propose an unsupervised learning algorithm named mixture slow feature analysis (MSFA) to timely evaluate the health status of the integrated HP. Characterized by frequent operation switches of different HPs due to the variable demand for hot water, various heating patterns with different heating speeds are observed. Slowness, a kind of dynamics to measure the varying speed of steady distribution, is properly considered in MSFA for both heating pattern division and health evaluation. Finally, the efficacy of the proposed method is verified through a real integrated HP with five connected HPs installed ten years ago. The experimental results show that MSFA is capable of accurately identifying health status of the system, especially failure at a preliminary stage compared to its competing algorithms.
With the advancement of the Internet of Things (IoT) and communication platform, large scale sensor deployment can be easily implemented in an urban city to collect various information. To date, there are only a handful of research studies about unde rstanding the usage of urban public spaces. Leveraging IoT, various sensors have been deployed in an urban residential area to monitor and study public space utilization patterns. In this paper, we propose a data processing system to generate space-centric insights about the utilization of an urban residential region of multiple points of interest (PoIs) that consists of 190,000m$^2$ real estate. We identify the activeness of each PoI based on the spectral clustering, and then study their corresponding static features, which are composed of transportation, commercial facilities, population density, along with other characteristics. Through the heuristic features inferring, the residential density and commercial facilities are the most significant factors affecting public place utilization.
For health prognostic task, ever-increasing efforts have been focused on machine learning-based methods, which are capable of yielding accurate remaining useful life (RUL) estimation for industrial equipment or components without exploring the degrad ation mechanism. A prerequisite ensuring the success of these methods depends on a wealth of run-to-failure data, however, run-to-failure data may be insufficient in practice. That is, conducting a substantial amount of destructive experiments not only is high costs, but also may cause catastrophic consequences. Out of this consideration, an enhanced RUL framework focusing on data self-generation is put forward for both non-cyclic and cyclic degradation patterns for the first time. It is designed to enrich data from a data-driven way, generating realistic-like time-series to enhance current RUL methods. First, high-quality data generation is ensured through the proposed convolutional recurrent generative adversarial network (CR-GAN), which adopts a two-channel fusion convolutional recurrent neural network. Next, a hierarchical framework is proposed to combine generated data into current RUL estimation methods. Finally, the efficacy of the proposed method is verified through both non-cyclic and cyclic degradation systems. With the enhanced RUL framework, an aero-engine system following non-cyclic degradation has been tested using three typical RUL models. State-of-art RUL estimation results are achieved by enhancing capsule network with generated time-series. Specifically, estimation errors evaluated by the index score function have been reduced by 21.77%, and 32.67% for the two employed operating conditions, respectively. Besides, the estimation error is reduced to zero for the Lithium-ion battery system, which presents cyclic degradation.
66 - Bo Yang , Xuelin Cao , Chau Yuen 2020
The empowering unmanned aerial vehicles (UAVs) have been extensively used in providing intelligence such as target tracking. In our field experiments, a pre-trained convolutional neural network (CNN) is deployed at the UAV to identify a target (a veh icle) from the captured video frames and enable the UAV to keep tracking. However, this kind of visual target tracking demands a lot of computational resources due to the desired high inference accuracy and stringent delay requirement. This motivates us to consider offloading this type of deep learning (DL) tasks to a mobile edge computing (MEC) server due to limited computational resource and energy budget of the UAV, and further improve the inference accuracy. Specifically, we propose a novel hierarchical DL tasks distribution framework, where the UAV is embedded with lower layers of the pre-trained CNN model, while the MEC server with rich computing resources will handle the higher layers of the CNN model. An optimization problem is formulated to minimize the weighted-sum cost including the tracking delay and energy consumption introduced by communication and computing of the UAVs, while taking into account the quality of data (e.g., video frames) input to the DL model and the inference errors. Analytical results are obtained and insights are provided to understand the tradeoff between the weighted-sum cost and inference error rate in the proposed framework. Numerical results demonstrate the effectiveness of the proposed offloading framework.
By informing accurate performance (e.g., capacity), health state management plays a significant role in safeguarding battery and its powered system. While most current approaches are primarily based on data-driven methods, lacking in-depth analysis o f battery performance degradation mechanism may discount their performances. To fill in the research gap about data-driven battery performance degradation analysis, an invariant learning based method is proposed to investigate whether the battery performance degradation follows a fixed behavior. First, to unfold the hidden dynamics of cycling battery data, measurements are reconstructed in phase subspace. Next, a novel multi-stage division strategy is put forward to judge the existent of multiple degradation behaviors. Then the whole aging procedure is sequentially divided into several segments, among which cycling data with consistent degradation speed are assigned in the same stage. Simulations on a well-know benchmark verify the efficacy of the proposed multi-stages identification strategy. The proposed method not only enables insights into degradation mechanism from data perspective, but also will be helpful to related topics, such as stage of health.
Dense small satellite networks (DSSN) in low earth orbits (LEO) can benefit several mobile terrestrial communication systems (MTCS). However, the potential benefits can only be achieved through careful consideration of DSSN infrastructure and identif ication of suitable DSSN technologies. In this paper, we discuss several components of DSSN infrastructure including satellite formations, orbital paths, inter-satellite communication (ISC) links, and communication architectures for data delivery from source to destination. We also review important technologies for DSSN as well as the challenges involved in the use of these technologies in DSSN. Several open research directions to enhance the benefits of DSSN for MTCS are also identified in the paper. A case study showing the integration benefits of DSSN in MTCS is also included.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا